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Abstract. All finite simple groups of Lie type of rank n over a field of size q, with the possible
exception of the Ree groups 2G2(q), have presentations with at most 49 relations and bit-length
O(log n + log q). Moreover, An and Sn have presentations with 3 generators, 7 relations and bit-
length O(log n), while SL(n, q) has a presentation with 6 generators, 25 relations and bit-length
O(log n+ log q).
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1. Introduction

In [GKKL1] we provided short presentations for all alternating groups, and all finite sim-
ple groups of Lie type other than the Ree groups 2G2(32e+1), using at most 1000 genera-
tors and relations. In [GKKL2] we proved the existence of profinite presentations for all
finite quasisimple groups using fewer than 20 relations. (Recall that a nontrivial group is
called quasisimple if it is both perfect and simple modulo its center. These are precisely
the perfect central extensions of nonabelian simple groups.) The goal of the present paper
is similar: we provide several presentations for the same simple groups, including ones
using 2 generators and at most 51 relations. These have the potential advantage that they
are simpler than those in [GKKL1], at least in the sense of requiring fewer relations; we
hope that both types of presentations will turn out to be useful, for example in Computa-
tional Group Theory.

The fundamental difference between this paper and [GKKL1] is that here we achieve
a smaller number of relations at the cost of relinquishing some control over the length of
the presentations, although our first result does not deal with length at all:

Theorem A. All finite quasisimple groups of Lie type, with the possible exception of
the Ree groups 2G2(32e+1), have presentations with 2 generators and 51 relations. All
symmetric and alternating groups have presentations with 2 generators and 8 relations.

In fact, a similar result holds for all finite simple groups, except perhaps 2G2(q) (the
sporadic groups are surveyed in [Soi]). There is also a version for almost quasisimple
groups (Corollary 9.4). Both the bounds of 20 profinite relations in [GKKL2] and 51
relations here are not optimal (cf. Remark 4 in Section 11). Possibly 4 is the correct upper
bound for both standard and profinite presentations. Wilson [Wi] has even conjectured
that 2 relations suffice for the universal covers of all finite simple groups.

Although we are giving up the requirement of small word length used in [GKKL1],
we can still retain control over bit-length, a weaker and less familiar notion of length
introduced in [BS] for Computer Science complexity considerations and used in [BGKLP,
BCLO]. This is the total number of bits required to write the presentation, where all
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Table 1. Summary

Group gens rels Group gens rels

An, Sn 3 7 SL(n, q) 6 25

SL(2, q) 3 9 SU(n, q) 5 32

SU(3, q) 3 21 Sp(2n, q), q odd 8 47

Sz(q) 4 29 Spin2n+1(q) 9 48

SL(3, q) 4 14 Spin+2n(q) 9 42

Sp(4, q) 4+ (2, q) 27 Spin−2n(q) 9 48

SU(4, q) 5 27 Ên(q) 6 30

G2(q),
3D4(q) 6 31 F4(q) 8 46

2F4(q) 6 49 2Ê6(q) 8 46

exponents are encoded as binary strings, the sum of whose lengths enters into the bit-
length. (The length that had to be kept small in [GKKL1] involves the much larger sum
of the actual exponents; cf. Section 2. Thus, “short” length implies “short” bit-length.)

Theorem B. All finite quasisimple groups of Lie type of rank n over a field of size q,
with the possible exception of the Ree groups 2G2(q), have presentations with at most 9
generators and 49 relations, and bit-length O(log n+ log q).1

As in [GKKL1], we viewAn (and Sn) as groups of Lie type of rank n−1 over “the field of
order 1” [Ti1]; as in [GKKL1], Theorem B seems counterintuitive, in view of the standard
types of known presentations for simple groups (such as [St2]); and as in [GKKL1], the
O(log n + log q) bound on bit-length is optimal in terms of n and q (due to the number
of bits required to write both n and q).

By [GKKL1, Lemma 2.1] (cf. Lemma 2.3 below), if we have any presentation of a
finite simple group G with at most r ≤ 49 relations, we obtain a presentation with 2
generators and at most r + 2 ≤ 51 relations. Thus, Theorem A is an immediate conse-
quence of Theorem B (using [St1]). Moreover, the proof of those lemmas shows that any
pair of generators of G can be used for such a presentation (cf. Remark 4 in Section 11).
Indeed, those lemmas are so general that they allow us to cheat somewhat: the resulting
presentations are not even slightly explicit, and we have no information concerning their
bit-lengths. “Almost all” pairs of elements of a finite simple group generate the group
[Di, KaLu, LiSh]. Some pairs force the length to be large (cf. the Appendix); we do not
know whether there are pairs for which the corresponding presentations have bit-length
O(log n+ log q).

In view of the preceding paragraph, our goal will be to prove Theorem B. Much better
bounds are obtained in various cases, some of which are summarized in Table 1. If G is
a group of Lie type then Ĝ will denote the corresponding simply connected group; in

1 Logarithms will be to the base 2.
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general, the simple quotient group is obtained by adding at most one further relation, but
two are needed for some orthogonal groups.

We highlight one entry of this table. For alternating and symmetric groups we use
classical permutation group ideas that would have been familiar in the 19th century in
order to go further than previous types of presentations [GKKL1, BCLO] in terms of the
small number of relations:

Theorem C. For each n ≥ 5, An and Sn have presentations with 3 generators, 7 rela-
tions and bit-length O(log n), using a bounded number of exponents each of which is at
most n.

This also yields a presentation of Sn having 5 generators, 9 relations and bit-length
O(log n), with two of the generators mapping onto (1, 2) and (1, . . . , n) (using Re-
mark 3.37). Moreover, in addition to the second part of Theorem A, as above Lemma 2.3
implies that if a and b are any generators of G = An or Sn, then there is a presentation
of G using 2 generators that map onto a and b, with 9 relations. However, as already
noted, we do not know if it is possible to choose a and b in order to obtain a presentation
with bit-length O(log n). (See the Appendix for related results.) In [GKKL1] we gave a
presentation of Sn having 58 relations and length (not just bit-length) O(log n). Different
bounded presentations of Sn in [BCLO] have bit-length O(log n) and, for all practical
purposes, at most 28 relations.

In order to obtain all of the presentations in the preceding theorems, although
[GKKL1] was a starting point we need significant new methods for unbounded rank n;
these ideas may prove to be more practical for actual group computation than some of
those in [GKKL1]. Moreover, while a few of the arguments used here are streamlined, of-
ten simpler, and occasionally improved versions of ones in [GKKL1], they are still rather
involved. As in [GKKL1] we do not use the classification of the finite simple groups in
the proofs of the above theorems. This classification is needed in the proof of Corollary D,
though only for the list of sporadic simple groups and not for any of the groups in Theo-
rem B.

For groups of bounded rank, our presentations can be made short in the sense used
in [GKKL1], at the cost of adding a small number of additional generators and relations
(so that [GKKL1, (3.3) and (4.16)] will apply; cf. (3.17) and (4.3) below). It is our treat-
ment of unbounded rank that contains new ideas to decrease the number of relations in
[GKKL1] at the expense of the length of the presentation. We provide more than one
approach for this purpose: some classical groups are handled in more than one way in
Sections 9 and 10. The unitary groups are dealt with separately in Section 8 using an idea
of Phan [Ph] as improved in [BeS].

In Sections 3–10 we consider various types of simple groups in order to prove the
above theorems. Most of our results are summarized in Table 1 and Theorem 9.1. Some
of these required computer assistance with small groups [Br, Hav, CHRR2] in order to
obtain the relatively small numbers of generators and relations in a few cases. In many
cases we only give hints regarding the bit-length assertion in Theorem B.

One of our original motivations for work on presentations was the following
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Corollary D (Holt’s Conjecture [Ho] for simple groups). There is a constant C such
that dimH 2(G,M) ≤ C dimM for every finite simple groupG, every prime p and every
irreducible Fp[G]-module M .

This conjecture has already been proven twice, in [GKKL1, Theorem B′] and [GKKL2,
Theorem B]. As in [GKKL1], the conjecture is an immediate consequence of Theorem B
(using the elementary result [GKKL1, Lemma 7.1]), except for the Ree groups 2G2(q)—
which also had to be handled separately in [GKKL1]. The proof based on the present
paper is simpler than the previous proofs, since Theorem B takes less effort than before.
On the other hand, [GKKL2] obtains the constant C = 18, and shows that this is virtu-
ally equivalent to the statement that all finite simple groups have profinite presentations
with 2 generators and 18 relations. Also [GKKL2, Theorem C] is a generalization of the
preceding Corollary to all finite groups (where C becomes 19).

Other consequences of some of our results are proved in Theorems 3.49 and 3.50:

Corollary E. (i) The automorphism group of the free group Fn, n > 2, has a presenta-
tion with 5 generators and 18 relations.

(ii) If n ≥ 6 then SL(n,Z) has a presentation using 4 generators and 16 relations.

Section 11 contains additional remarks concerning our results. For now we note one fur-
ther unexpected direction:

Efficient presentations. If 〈X | R〉 is a presentation of a finite group G, then |R| − |X|
is at least the smallest number d(M) of generators of the Schur multiplier M of G; and
〈X | R〉 is called an efficient presentation if |R| − |X| = d(M) [CRKMW, CHRR1,
CHRR2]. For 35 years the groups PSL(2, p) with p ≥ 5 prime have contained the only
infinite family of finite nonabelian simple groups known to have efficient presentations
([Sun, CR3]; cf. (3.19)). In fact, SL(2,Zm) is efficient for any odd integerm > 1 [CRW1,
p. 70], as is any quotient by a subgroup of its center (compare [CR2, p. 19]).

On the other hand, [Har, Cor. 5.4] states that, if p is any prime not dividing the order
of a finite groupG, thenG×P is efficient for all sufficiently large elementary abelian p-
groups P . (In particular, every perfect finite group is the derived group of an efficient finite
group.) These groups have very large numbers of generators and much larger numbers of
relations. Therefore, it may be of some interest that Corollaries 3.8(i) and 3.13(ii) contain
examples of families of groups having efficient presentations with alternating groups as
composition factors and small numbers of relations. For example, we show that, for any
prime p ≡ 11 (mod 12), there is an efficient presentation of Ap+2 × T with 2 generators
and 3 relations, where T is the subgroup of index 2 in AGL(1, p).

Table 2 in Section 3.2 contains presentations for various groups An and Sn when n
has a special form, including ones that use fewer relations than any others presently in
print. For some alternating or symmetric groups Sections 3.1 and 3.2 contain more than
one presentation. Section 3.5 contains explicit presentations of Sn for all n ≥ 50. For
general n it would be desirable to have even fewer relations than in Theorem C, with the
goal of approaching efficiency for alternating groups (compare [GKKL3], where we use
profinite presentations for a similar purpose).
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While [GKKL1] concerned (word) lengths, the present paper concerns bit-lengths. In
the Appendix we conclude with simple lower bounds for lengths (but not bit-lengths) of
presentations.

2. Preliminaries

Presentation lengths. In [GKKL1, Section 1.2] there is a long discussion of various
notions of “lengths” of a presentation 〈X | R〉 and some of the relationships among them.
Here we only summarize what is needed for the present purposes.

• length= word length: |X| + sum of the lengths of the words in R within the free group
FX on X. Thus, length refers to strings in the alphabet X ∪ X−1. This is the notion of
length used in [GKKL1], and seems the most natural notion from a purely mathematical
point of view. We reserve the term short presentation for one having “small” length.
Achieving this was one of the goals in [GKKL1], though not of the present paper.
• bit-length: the total number of bits required to write the presentation, used in [BGKLP]

and [BCLO]. All exponents are encoded as binary strings, the sum of whose lengths
enters into the bit-length.
• expo-length: the total number of exponents used in the presentation.

By comparing the present paper with [GKKL1] it becomes clear that small bit-length is
much easier to achieve than small length. The properties required of the bit-length bl(w)
of a word w are as follows:

bl(x) = 1 if x±1
∈ X; bl(wn) ≤ bl(w)+ log |n| if n ∈ Z\{0, 1,−1};

bl(ww′) ≤ bl(w)+ bl(w′) for any words w,w′.

Notation: Functions will always act on the left, and we use the notation gh = h−1gh and
[g, h] = g−1h−1gh = g−1gh.

Presentations. We will use the elementary fact [GKKL1, Lemma 2.3] that a group J
that has a presentation based on a known group, using presentations of subgroups of that
group, has those subgroups automatically built into J :

Lemma 2.1. Let π : FX∪Y → J = 〈X, Y | R, S〉 and λ : FX → H = 〈X | R〉 be the
natural surjections, where H is finite. Assume that α : J → J0 is a homomorphism such
that α〈π(X)〉 ∼= H . Then 〈π(X)〉 ∼= H .

In the present paper we will use this freely, often without comments.
We will need the following elementary observation in order to handle some central

extensions. This was stated in [GKKL1, Proposition 2.4] for length, but the proof applies
just as well to bit-length.

Lemma 2.2. Suppose that G has a presentation 〈X | R〉 in which R has total bit-
length L. If Ĝ is a perfect group such that Ĝ/Z = G with Z ≤ Z(Ĝ) of prime order p,
then Ĝ has a presentation 〈X̂ | R̂〉 such that |X̂| = |X| + 1, |R̂| = |X| + |R| + 1, the
bit-length of R̂ is less than 4|X| + 2L+ p|R|, and X̂ contains a generator of Z.
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We also note a straightforward improvement of [GKKL1, Lemma 2.1]:

Lemma 2.3. Let G = 〈D〉 be a finite group having a presentation 〈X | R〉; let
π : FX → G be the natural map. Then G also has a presentation 〈D | R′〉 such that
|R′| = |D| + |R| − |π(X) ∩D|.

Proof. We recall the simple idea used in the proof of [GKKL1, Lemma 2.1]. Write each
x ∈ X as a word vx(D) in D, and each d ∈ D as a word wd(X) in X; and let V (D) =
{vx(D) | x ∈ X}. According to the proof of [GKKL1, Lemma 2.1], we then obtain
another presentation for G:

G = 〈D | d = wd(V (D)), r(V (D)) = 1, d ∈ D, r ∈ R〉.

For each d ∈ π(X) ∩D, one of the above relations can be taken to be d = d , and hence
can be deleted. ut

The following is another elementary observation used later:

Lemma 2.4. Let G be a normal subgroup of a finite group A. Suppose that A/G has a
presentation 〈Y | S〉 and that G has a presentation 〈X | R〉. Then A has a presentation

〈X, Y | R, y−1xy = wx,y, s = ws ∀x ∈ X, y ∈ Y, s ∈ S〉,

where wx,y is a word in X such that the inner automorphism of A induced by y ∈ Y
sends x to wx,y; and when s is evaluated in A it coincides with the word ws in X. This
new presentation uses |X| + |Y | generators and |R| + |S| + |X| |Y | relations.

Proof. By construction, the presented group H surjects onto A. Since G is finite, 〈X〉 is
a normal subgroup of H we can identify with G. Then H/〈X〉 is a homomorphic image
of A/G. It follows that H/〈X〉 ∼= A/G, and hence that |H | = |A|, as required. ut

Curtis–Steinberg–Tits presentation. This is a standard presentation for the simply con-
nected cover of a group of Lie type; see [Cur], [St2], [Ti2, Theorem 13.32] and [GLS,
Theorem 2.9.3]. We will generally refer to [GKKL1, Sections 5.1 and 5.2] for a discus-
sion of the versions we will use.

3. Symmetric and alternating groups

We will use a presentation for alternating groups, due to Carmichael in 1923 [Car1,
p. 255] (cf. [Car2, p. 169]), that is somewhat more symmetrical than a presentation for
symmetric groups due to Burnside and Miller ([Bur, p. 464], [Mi, p. 366]) in 1911 and
used in [GKKL1, (2.6)]. In addition to its symmetry, Carmichael’s presentation requires
less data (i.e., fewer relations):

An+2 = 〈x1, . . . , xn | x
3
i = (xixj )

2
= 1 whenever i 6= j〉, (3.1)

based on the 3-cycles (i, n+ 1, n+ 2), 1 ≤ i ≤ n.
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In Section 3.1 we make crucial use of the symmetry of (3.1), as follows. Let
T = 〈X | R〉 be a group acting (almost) 2-transitively on {1, . . . , n}, viewed as act-
ing on {1, . . . , n, n+ 1, n+ 2}. Introduce a new generator z corresponding to the 3-cycle
(1, n+1, n+2). We include additional relations in order to guarantee that |zT | = n in our
presented group, as well as a very small number of relations of the form z3

= (zzt )2 = 1
for suitable t ∈ T , in order to use (3.1).

This idea will be reworked in Sections 3.1 and 3.2 in order to handle various special
degrees n. The most important examples for later use are presentations in Corollaries 3.8
and 3.13 for Ap+2 and Sp+2 for suitable primes p. We glue two such presentations in
Section 3.4, using a general idea described in Section 3.3, in order to deal with symmetric
and alternating groups of arbitrary degrees.

3.1. Using 2-homogeneous groups for special degrees

We begin with an integer n ≥ 3, together with the following ingredients:

• a group T acting transitively on the unordered pairs of distinct points in {1, . . . , n} (i.e.,
T is 2-homogeneous)—we do not assume that T acts faithfully on {1, . . . , n}, nor that
T acts inside An, although the following lemma and its proof are somewhat simpler
when T induces a subgroup of An;
• a presentation 〈X | R〉 of T ;
• a subset X1 of T such that T1 = 〈X1〉 is the stabilizer of 1, where each element of X1

is viewed as a word in X;
• a wordw inX that moves 1 and induces an element ofAn (whenw is viewed inside T ).

We are given a surjection ¯ : T → T̄ with T̄ ≤ Sn. If T is not 2-transitive, note that
T̄ ≤ An as T̄ has odd order (since an involution in T̄ would allow some ordered 2-set to
be moved to any other one). In particular, T̄ ∩ An is transitive. Finally:

• View T̄ as a subgroup of Sn+2 = Sym{1, . . . , n, n+ 1, n+ 2} fixing n+ 1 and n+ 2.
If t ∈ T write sign(t̄ ) = (−1)ε(t̄ ), ε(t̄ ) ∈ {0, 1}.

The kernel of ¯ will be present, but will not have any influence on our presentations. All
of our results are based on the following idea:

Lemma 3.2. If J := 〈X, z | R, z3
= 1, (zzw)2 = 1, zt = zsign(t̄ ) for t ∈ X1〉, then

J ∼= An+2 × T .

Proof. Define ϕ : X ∪ {z} → An+2 × T by

ϕ(x) = (x̄ · (n+ 1, n+ 2)ε(x̄), x) for x ∈ X,
ϕ(z) = (z′, 1) with z′ := (1, n+ 1, n+ 2).

(3.3)

Then it is easy to check that the image of ϕ satisfies the defining relations for J , and we
obtain a homomorphism ϕ : J → An+2 × T . We claim that ϕ is a surjection. For, clearly
〈ϕ(X)〉 is naturally isomorphic to T , and acts 2-homogeneously as T̄ on {1, . . . , n} when
restricted to the first component. Thus, 〈ϕ(z)〈ϕ(X)〉〉 = An+2 × 1, where An+2 contains
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x̄(n + 1, n + 2)ε(x̄) for each x ∈ X. Then ϕ(J ) also contains (1, x) for each x ∈ X, so
that ϕ is surjective, as claimed.

Then there is also a surjection π : J → An+2.
By Lemma 2.1, J has a subgroup we can identify with T = 〈X〉. We also view z as

contained in J .
Since 〈z〉T1 = 〈z〉 by our relations, we have |〈z〉T | ≤ n; but |π(〈z〉T )| = n and so

|〈z〉T | = n. Consequently, T acts on 〈z〉T as it does on {1, . . . , n}, the kernel of ¯ acts
trivially on 〈z〉T , and we can view T̄ as acting on 〈z〉T .

If t ∈ T and t̄ = 1 then sign(ḡt̄ ḡ−1) = 1 for g ∈ T , so that zgtg
−1
= z, (zg)t = zg ,

and hence T̄ acts on zT as T does. Then NT̄∩An(〈z〉) centralizes z by the last of our

relations, so that zT̄∩An ∩ 〈z〉 = {z}, |zT̄∩An | = n, and T̄ ∩An acts on zT̄∩An as it does on
{1, . . . , n}.

Moreover, if T̄ is not inside An then our sign condition in the presentation implies
that |zT | = 2n and T̄ ∩ An has 2 orbits on zT , namely, zT̄∩An and (z−1)T̄∩An .

By 2-homogeneity, any unordered pair of distinct members of 〈z〉T is T -conjugate to
{〈z〉, 〈z〉w}. If T̄ ∩ An is 2-homogeneous, then any unordered pair of distinct members
of zT is T̄ ∩ An-conjugate to {z, zw}. Since the relation (zzw)2 = 1 in the presentation
implies that (zwz)2 = 1, it follows that zT satisfies (3.1), so that N := 〈zT 〉 ∼= An+2.

If T̄ ∩An is not 2-homogeneous then, by hypothesis, T̄ is 2-transitive but T̄ ∩An is not.
We claim that we still haveN := 〈zT 〉 ∼= An+2. For, any ordered pair of distinct members
of 〈z〉T is T̄ ∩An–conjugate to (〈z〉, 〈z〉w) or to one other pair, (〈z〉, 〈z〉y), say, where y ∈
T̄ ∩ An. Some g ∈ T̄ \An satisfies (〈z〉, 〈z〉w)g = (〈z〉, 〈z〉y). Clearly, z, zw, zy ∈ zT̄∩An .
Since g /∈ An, it follows that both zg and (zw)g lie in the other T̄ ∩ An–class (z−1)T̄∩An

of z. Thus, zg = z−1 and (zw)g = (zy)−1, so that (zzy)2 = ([z−1(zw)−1]2)g = 1 by our
relations, and we again have N ∼= An+2 by (3.1).

Clearly N � J and J/N = J/〈zT 〉 ∼= T . Then |J | = |An+2 × T |, so that J ∼=
An+2 × T . ut

Examples 3.4. (1) Let p be an odd prime, n = p + 1 and T = SL(2, p). Then T
has a presentation with 2 generators and 2 relations [CR2] (cf. (3.19)), while T1 can be
generated by 2 elements. Thus, by the Lemma,Ap+3×SL(2, p) has a presentation with 3
generators and 6 relations (cf. Examples 3.18(1) and 3.21(9)).

(2) Let T be

AGL(1, p) = {x 7→ αx + β | α ∈ F∗p, β ∈ Fp} = P o T0

acting on Fp = {0, . . . , p−1}. Here P = 〈a〉 is cyclic of odd prime order p and T0 = 〈b〉

is cyclic of order p − 1, where

a = (0, 1, . . . , p − 1) and b : x 7→ r−1x (3.5)

if F∗p = 〈r〉. By [Neu], if s(r − 1) ≡ −1 (mod p) then

T = AGL(1, p) = 〈a, b | ap = bp−1, (as)b = as−1
〉. (3.6)
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Lemma 3.2 produces a presentation

Ap+2 × T = 〈a, b, z | a
p
= bp−1, (as)b = as−1, z3

= (zza)2 = 1, zb = z−1
〉

with 3 generators and 5 relations, since T0 = 〈b〉 has 1 generator,

(3) Our standard example of a 2-homogeneous group that is not 2-transitive is the sub-
group T := AGL(1, p)(2) of index 2 in AGL(1, p) for a prime p ≡ 3 (mod 4), p > 3.
This time T = P o T0 with P cyclic of order p and T0 cyclic of order (p − 1)/2. By
[Neu],

T = AGL(1, p)(2) = 〈a, b | ap = b(p−1)/2, (as)b = as−1
〉,

where this time s(r − 1) ≡ −1 (mod p) and F∗p2
= 〈r〉; a and b behave as in (3.5). Once

again Ap+2 × T has a presentation

Ap+2 × T = 〈a, b, z | a
p
= b(p−1)/2, (as)b = as−1, z3

= (zza)2 = 1, zb = z〉

with 3 generators and 5 relations.

(4) When p ≡ 1 (mod 4), we can still use the above presentation for T := AGL(1, p)(2),
even though T has 2 orbits on unordered pairs. The argument in the lemma produces
a presentation forAp+2×T with 3 generators and 6 relations, using an additional relation
(zzw

′

)2 = 1.

(5) For future reference we note that, for any prime p ≡ 3 (mod 4) with p > 3,

AGL(1, p)(2) × Z2 = 〈a, b | a
2p
= b(p−1)/2, (as)b = as−2

〉,

where this time s(r − 1) ≡ −2 (mod p) and F∗p2
= 〈r〉; since s and s + p both satisfy

the preceding congruence, we may assume that s is odd. In order to see that the presented
group T is as claimed, note that T surjects onto AGL(1, p)(2) × Z2 via a 7→ (a′, z)

and b 7→ (b′, 1), with a′, b′ playing the roles of a, b in (3) and |z| = 2. Since a2ps
=

(a2ps)b = (a2p)s−2, we have a4p
= 1. Then (a2p)s = a2p since s is odd, so that

(aps)b = ap(s−2)
= a−ps , and hence aps = (aps)b

(p−1)/2
= a−ps since (p− 1)/2 is odd.

Now a2ps
= 1, and hence a2p

= 1 since s is odd. Clearly, 〈a〉�T . Then ap ∈ Z(T ), and
T is as claimed.

Corollary 3.7. If p is prime then Ap+2 has a presentation with 3 generators, 6 relations
and bit-length O(logp).

Proof. The presentation for Ap+2 × AGL(1, p) in Example 3.4(2) has 3 generators we
will call a,b, z; we view w as a. (N.B.: Here and later we use bold-faced letters in order
to distinguish from letters such as a and b that already have meanings in Examples 3.4.)

Using the isomorphism (3.3) in the lemma, in Ap+2 × T we have b =

ϕ(b(p + 1, p + 2), b) for a (p − 1)-cycle b ∈ T0 (the point 1 in that lemma is
now the point 0 ∈ Fp fixed by b). Then ba moves 0 (and fixes p + 1 and p + 2),
so that ϕ(baz) = (ba(p + 1, p + 2), ba)(z′, 1) = (c, ba) for a p-cycle c. Thus,
ϕ((baz)p) = (1, ba). Since T is the normal closure of ba in T , imposing the additional
relation (baz)p = 1 gives a presentation for Ap+2. ut

Note that this is not, however, a short presentation (cf. Section 2).
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For a more restricted choice of p we can improve the preceding result. The following
is crucial for Theorem C and hence for occurrences of alternating groups later in this
paper.

Corollary 3.8. For any prime p ≡ 11 (mod 12),

(i) Ap+2×AGL(1, p)(2) has a presentation with 2 generators, 3 relations and bit-length
O(logp);

(ii) Ap+2 has a presentation with 2 generators, 4 relations and bit-length O(logp).

Proof. (i) Since p ≡ 3 (mod 4), we can let T = AGL(1, p)(2) ≤ Ap, r and s be as in
Example 3.4(3). We will show that Ap+2 × AGL(1, p)(2) is isomorphic to the group J
defined by the presentation

〈a, g | ap = b(p−1)/2, (as)b = as−1, (zza)2 = 1〉,

where b := g3 and z := g(p−1)/2.
First note that Ap+2 × T satisfies this presentation. Namely, once again let T act on

{0, . . . , p− 1, p+ 1, p+ 2}, fixing p+ 1 and p+ 2. Let g be the product of the 3-cycle
(0, p + 1, p + 2) and an element that generates T0 and hence has two cycles of length
(p − 1)/2 on {1, . . . , p − 1}. Since p ≡ 2 (mod 3), g has order 3(p − 1)/2, so that
T = 〈a, g3

〉 is as in Example 3.4(3). The remaining relations z3
= 1 and zb = z in that

example are clear.
Now consider the presented group J . By Example 3.4(3) and Lemma 2.1, J has a

subgroup we can identify with T = 〈a, b〉. In particular, b = g3 has order (p − 1)/2,
and hence |g| = 3(p − 1)/2 since p ≡ 2 (mod 3). Clearly, (zza)2 = 1 where a moves 0.
Since T0 = 〈b〉, the remaining relations z3

= 1 and zb = z in Lemma 3.2 are automatic:
they hold in 〈g〉. This proves (i).

(ii) This is similar to the preceding corollary. This time b has two cycles of length
(p − 1)/2, and we will see that

Ap+2 ∼= 〈a, g | a
p
= g3κ , (as)g

3
= as−1, (gκ(gκ)a)2 = (g3(gκ)a(gκ)a

−1
)κ+1
= 1〉

(3.9)
with κ := (p−1)/2, s(r−1) ≡ −1 (mod p) and F∗p2

= 〈r〉. For, we view (i) as a presen-
tation for Ap+2×AGL(1, p)(2) with generators a and g, and we use b := g3 and z := gκ .
By (3.3), as in the proof of Corollary 3.7 we have ϕ(bzaza−1

) = (b, b)(z′az′a
−1
, 1) =

(c1c2, b) for disjoint cycles c1 and c2 of length κ + 1, since a(0) = 1 and a−1(0) = −1
are in different b-cycles (as p ≡ 3 (mod 4)). Then

ϕ((bzaza−1
)κ+1) = (1, b), (3.10)

and imposing the additional relation (bzaza−1
)κ+1

= 1 on the presentation in (i) gives
(3.9). ut

In [GKKL3] there is a similar presentation for 2Ap+2 × T .
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Remark 3.11. In the presentations in the preceding two corollaries, replace 0 by p. Then
every cycle (k, k + 1, . . . , l) (with k − l even) can be written as a word of bit-length
O(logp) in the generators. Any even permutation with bounded support can also be
expressed as a word of bit-length O(logp) in the generators. For all of these elements,
the indicated words use a bounded number of exponents.

Namely, all 3-cycles (k, p + 1, p + 2) = (p, p + 1, p + 2)a
−k

have bit-length
O(logp), so the same is true of any permutation of bounded support. In particular, if x =
(p, 1)(p+1, p+2) then xa = (1, . . . , p−1)(p+1, p+2) has bit-lengthO(logp), hence
so do (xa)−lal = (p, 1, . . . , l)(p + 1, p + 2)l and [(xa)−lak]−1(xa)−lal = (k, . . . , l)

whenever k < l ≤ p − 1 with l − k even. The remaining cycles arise, for example, as
(k, . . . , p − 1)(p − 1, p, p + 1) = (k, . . . , p + 1).

Symmetric groups. There are analogous results for symmetric groups. This time we
assume that our group T = 〈X | R〉 acts as a 2-transitive permutation group T̄ on
{1, . . . , n}. Once again write T1 = 〈X1〉 where each element of X1 is viewed as a word
in X, and let w be a word in X that moves 1 when w is viewed inside T . This time we
assume that T̄ does not lie in An; let T + denote the subgroup of index 2 in T that induces
T̄ ∩An. The obvious examples are AGL(1, p) and PGL(2, p). We will use the following
analogue of Lemma 3.2:

Lemma 3.12. If J = 〈X, z | R, z3
= 1, (zzw)2 = 1, [z,X1] = 1〉, then J is isomorphic

to a subgroup of index 2 in Sn+2 × T that projects onto each factor. (In particular, J sur-
jects onto Sn+2, and this quotient affords a presentation of Sn+2 using one more relation
if T is the normal closure of one of its elements.)

Proof. View Sn+2 × T as acting in the natural manner on the disjoint union {1, . . . , n,
n+ 1, n+ 2} ∪̇ {1, . . . , n}, and let H be its subgroup of index 2 that induces a subgroup
of A2n+2 (recall that T̄ is not inside An). Clearly, H projects onto each factor.

Once again we view T̄ as a subgroup of Sn+2 = Sym{1, . . . , n, n + 1, n + 2} fixing
n+ 1 and n+ 2.

We map J into Sn+2 × T using a simpler version of (3.3): ϕ(x) = (x̄, x) for x ∈ X,
and ϕ(z) = ((1, n + 1, n + 2), 1). Since ϕ(x) acts inside A2n+2 we have ϕ(J ) ≤ H .
We claim that ϕ(J ) = H . For, as in the proof of Lemma 3.2, ϕ(J ) contains An+2 × 1
and 1 × T +. Since T̄ is not in An, some ϕ(x), x ∈ X, lies in H\(An+2 × T

+). Thus,
ϕ(J ) = H .

We identify T = 〈X〉 with a subgroup of J and z with an element of J . As before,
the relation [z,X1] = 1 implies that T acts on zT as it does on {1, . . . , n}, and hence
is 2-transitive. Consequently, by (3.1) the relations z3

= 1 and (zzw)2 = 1 imply that
N := 〈zT 〉 ∼= An+2. Since J/N ∼= T , we have |J | = |An+2| |T | = |H |, so that J ∼= H .

ut

The following is crucial for Theorem C:

Corollary 3.13. Let p be a prime.

(i) Sp+2 has a presentation with 3 generators, 6 relations and bit-length O(logp).
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(ii) If p ≡ 2 (mod 3) then the subgroup of index 2 in Sp+2 × AGL(1, p) that projects
onto each factor has a presentation with 2 generators, 3 relations and bit-length
O(logp).

(iii) If p ≡ 2 (mod 3) then Sp+2 has a presentation with 2 generators, 4 relations and
bit-length O(logp).

Proof. Part (i) follows from the preceding lemma together with the group T =AGL(1, p)
in Example 3.4(2), while (ii) is proved exactly as in Corollary 3.8 by using that example.
This time, in (iii) we obtain

Sp+2 ∼= 〈a, g | a
p
= (g3)p−1, (as)g

3
= as−1,

(gp−1(gp−1)a)2 = (g6(gp−1)a (gp−1)a
r

)(p+1)/2
= 1〉

(3.14)

with s(r − 1) ≡ −1 (mod p) and F∗p = 〈r〉. For, once again we view (ii) as a presentation
with generators a and g. Let b := g3 and z := gp−1. Using the isomorphism ϕ in the
lemma, we have ϕ(b2zazar ) = (b2, b2)(z′a z′a

r
, 1) = (c1c2, b

2) for disjoint cycles c1
and c2 of length (p + 1)/2, since a−1(0) = −1 and a−r(0) = −r are in different b2-
cycles. Thus,

ϕ((b2zazar )(p+1)/2) = (1, bp+1) = (1, b2). (3.15)

Since T ∩ Ap is the normal closure of b2 in T , imposing the additional relation
(b2zazar )(p+1)/2

= 1 produces (3.14). ut

Remark 3.16. For the presentation in Corollary 3.13, the assertions in Remark 3.11
hold once again for even permutations. They also hold for odd permutations if p ≡ 11
(mod 12).

We handle even permutations as before. Odd permutations are more delicate: they
require constructing a transposition of the required bit-length, and we are only able to
achieve this when p ≡ 11 (mod 12). First we recall a group-theoretic version of “Horner’s
Rule” [GKKL1, (3.3)] (cf. [BKL, p. 512]) for elements v, f in any group and any positive
integer n:

vvf vf
2
· · · vf

n

= (vf−1)nvf n. (3.17)

Note that

b2 := b(p−1)/2
= (1, p − 1)(2, p − 2) · · · ((p − 1)/2, p − (p − 1)/2)

is an odd permutation since p ≡ 3 (mod 4). We use several additional permutations:

c(i, j) := za−i (za−j )−1za−i
= (i, j)(p + 1, p + 2) for 1 ≤ i, j ≤ p,

v• := c(1, p − 1)c(2, p − 2) = (1, p − 1)(2, p − 2),
c(p−1)/2 := (c(1, 2)a)(p−1)/2−2c(1, 2)a−((p−1)/2−2)

= (1, 2, . . . , (p − 1)/2)

since (p − 1)/2 is odd (cf. (3.17)),

c• := c(p−1)/2 c
−a(p+1)/2

(p−1)/2 = (1, 2, . . . , (p − 1)/2)(p − 1, p − 2, . . . , p − (p − 1)/2),

and
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v := (c(1, p−1)c−1
• )

(p−1)/2c(1, p−1)c(p−1)/2
• = (c(1, p−1)c−1

• )
(p−1)/2c(1, p−1)

≡ (1, p − 1)(2, p − 2) · · · ((p − 1)/2, p − (p − 1)/2)(p + 1, p + 2) (cf. (3.17)).

Then vb2 is the transposition (p + 1, p + 2) (compare Section 3.5). Now conjugate this
transposition to get all others.

We do not know if the final assertion in the remark holds when p ≡ 1 (mod 4).

Examples 3.18. We have been varying Example 3.4(2). Now we consider Exam-
ple 3.4(1).

(1) Again consider a prime p > 3. We will give several presentations for Ap+3 both here
and in Example 3.21(9). Let F∗p = 〈j〉 and j ̄ ≡ 1 (mod p). Then

Ap+3 = 〈x, y, z | x
2
= (xy)3, (xy4xy(p+1)/2)2ypx2[p/3]

= 1,
z3
= (zzx)2 = [y, z] = [h, z] = 1, (hzyx zy

j x )(p+1)/2
= 1〉,

where h := y ̄ (yj )xy ̄x−1. This uses the following presentation for T := SL(2, p),
obtained in [CR2] using [Sun]:

SL(2, p) = 〈x, y | x2
= (xy)3, (xy4xy(p+1)/2)2ypx2[p/3]

= 1〉, (3.19)

where x and y arise from elements of order 4 and p, respectively (corresponding to the
matrices t and u given later in (4.4)). Then T∞ = 〈X∞〉 with X∞ := {y, h} in notation
imitating that in Lemma 3.2. The final relation in the above presentation for Ap+3 is
obtained as in the proof of Corollary 3.8(ii). In Example 3.21(9) we will decrease the
number of relations, but we will not need this for our main results.

Another presentation for Ap+3 is

Ap+3 = 〈u, h, t, z | u
p
= t2 = 1, uh = uj

2
, ht = h−1, t = uutu, ht = ū (uj )tū ,

z3
= (zzt )2 = [u, z] = [h, z] = 1, (hzutzu

j t )(p+1)/2
= 1〉.

This uses Lemma 3.2 together with the presentation for T := PSL(2, p) given in
[GKKL1, Theorem 3.6]. Similar presentations can be obtained using the presentations
for PSL(2, p) in [Fr] or [To].

(2) Once again let F∗p = 〈j〉. Then

Sp+3 = 〈u, h, t, z | u
p
= t2 = 1, uh = uj , ht = h−1, t = uutu,

z3
= (zzt )2 = [u, z] = [h, z] = 1, (hzut )p+1

= 1〉.

This uses Lemma 3.2 together with a presentation 〈u, h, t | up = t2 = 1, uh = uj ,

ht = h−1, t = uutu〉 for T := PGL(2, p) analogous to [GKKL1, Theorem 3.6]. The
final relation is obtained as in the proof of Corollary 3.8(ii).
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Table 2. Sn+2, An+2: Presentations for some small n

G n+ 2 T |R| ρ |X1| |x1| gens rels in Ex. ]

S11 9+ 2 AGL(1, 9) 4 1 1 8 2 6 3.21(1)

A11 9+ 2 PSL(2, 8) 2 2 1 7 2 5 3.21(2)

A11 9+ 2 AGL(1, 9)(2) 4 2 1 4 2 7 3.21(3)

S12 10+ 2 2PGL(2, 9) 2 1 2 16 2 5 3.21(4)

A12 10+ 2 6PSL(2, 9) 2 1 2 8 2 5 3.21(5)

A23 21+ 2 12PSL(3, 4) 2 1 2 5 2 5 3.21(6)

A23
(7
2
)
+ 2 6A7 2 2 2 5 2 6 3.21(7)

A24 22+ 2 12M22 2 1 2 7 2 5 3.21(8)

A24 2 · 11+ 2 AGL(1, 11)(2) × Z2 2 3 1 5 2 6 3.21(12)

A24 2 · 11+ 2 AGL(1, 11) 2 4 1 5 2 7 3.21(13)

A47
(10

2
)
+ 2 A10 2 2 2 8 2 6 3.21(10)

A47
(10

2
)
+ 2 A10 × SL(2, 7) 4 2 2 7 2 8 3.21(11)

A48 2 · 23+ 2 AGL(1, 23)(2) × Z2 2 3 1 11 2 6 3.21(12)

A48 2 · 23+ 2 AGL(1, 23) 2 4 1 11 2 7 3.21(13)

3.2. Small n

In order to handle a few degrees n < 50 we will need further variations on the idea used in
Corollaries 3.8 and 3.13. All of the general presentations below have bit-lengthO(log n),
but this is not significant since our goal involves bounded n. We suspect that most readers
will prefer to skip this section.

In Table 2 we summarize presentations for G = Sn+2 or An+2 needed later. For this
table and our variations on Corollaries 3.8 and 3.13 we use the following notation:

• The group T acts as a transitive group T̄ ≤ Sn on {1, . . . , n}.
• T has exactly ρ orbits of unordered pairs of distinct points.
• T = 〈X | R〉.
• T1 = 〈X1〉, where T1 is again the stabilizer of 1.
• x1 ∈ X1 ∩X has order |x1| = k not divisible by 3.
• Each x′ ∈ X′1 := X1\{x1} is given as a word wx′(x1, X

′), where X′ := X\{x1}.
• T̄ is also viewed as a subgroup of Sym{1, . . . , n+ 2} fixing n+ 1 and n+ 2.
• Let H denote the preimage in Sn+2 × T of A2n+2 ∩ (Sn+2 × T̄ ) when Sn+2 × T̄ is

viewed as acting on the disjoint union {1, . . . , n, n+ 1, n+ 2} ∪̇ {1, . . . , n}.

Proposition 3.20. (i) If T̄ ∩ An is the normal closure of one of its elements, then the
group H/(1× (T̄ ∩An)) has a presentation with |X| generators and |R| + ρ + |X1|

relations.
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(ii) If T induces a subgroup ofAn, thenAn+2×T has a presentation with |X| generators
and |R| + ρ + |X1| − 1 relations.

Sketch of proof. Let w1, . . . , wρ be words in X such that the ρ pairs {1, w−1
j (1)} are in

different T -orbits. Each r ∈ R is a word r(x1, X
′) in X = {x1} ∪X

′. We will show that

J := 〈X′, g | r(g3, X′) = (gk(gk)wj )2 = [gk, wx′(g3, X′)] = 1 ∀r ∈ R ∀j ∀x′ ∈ X′1〉

is isomorphic toH . Let z′ := (1, n+1, n+2) and let the integer ν satisfy 3ν ≡ 1 (mod k),
so that g := xν1 z

′ satisfies g3
= x1 and gk = z′±1. Then J surjects onto H as in the proof

of Lemma 3.12.
Now consider J , and let x1 := g3. As before, we can view T as the subgroup

〈X′, g3
〉 = 〈X′, x1〉 of J . Our relations imply that z := gk commutes with X′1 ∪ {x1}

and hence with T1. Then |zT | = n, and we can use (3.1) as before to prove both (i)
and (ii). ut

Examples 3.21(12) and 3.21(13) contain further variations on the idea behind the propo-
sition.

Examples 3.21. (1) n + 2=11: T =AGL(1, 9) has the presentation 〈a, b | a3
=b8
=1,

ab
2
= aa−b, [a, ab] = 1〉, ρ = |X1| = 1 and |x1| = 8, so that S11 has a presentation

with 2 generators and 4 + 1 + 1 relations. However, for use in Theorem C it is easier
simply to use the presentation for S11 with 2 generators and 6 relations in [Ar, p. 54] (cf.
[CoMo, p. 64]).

(2) n + 2 = 11: T = PSL(2, 8) has a presentation with 2 generators and 2 relations
[CHRR1], ρ = 1, |X1| = 2 and |x1| = 7, so that Proposition 3.20 produces a presentation
of A11 with 2 generators and 2 + 2 + 1 relations. It has long been known that A11 has a
presentation with 2 generators and 6 relations [CoMo, p. 67].

(3) n+ 2 = 11: T has index 2 in AGL(1, 9), T has the presentation 〈a, b | a3
= b4

= 1,
ab

2
= a−1, [a, ab] = 1〉, ρ = 2, |X1| = 1 and |x1| = 4, so that A11 has a presentation

with 2 generators and 4+ 2+ 1 relations.

(4) n + 2 = 12: T = 2PGL(2, 9) has presentations with 2 generators and 2 relations
provided by Havas [Hav], such as

2PGL(2, 9) = 〈a, b | (b−1a−1)3baba−1
= a−2b−1a4ba−1b−1ab = 1〉,

where x1 := a has order 16. (Havas found this using [CHRR1, Method 2], modified to
handle groups that are not necessarily perfect.) This time ρ = 1 and |X1| = 2, so that
S12 has a presentation with 2 generators and 2+ 1+ 2 relations. Once again, it has long
been known that S12 has a presentation with 2 generators and 7 relations [Ar, p. 54] (cf.
[CoMo, p. 64]).

(5) n + 2 = 12: T = 6PSL(2, 9) ∼= 6A6 has a presentation 6A6 = 〈a, b | ab
3(ba)−4

=

(ab2ab−2)2ab2
= 1〉 with 2 generators and 2 relations [Ro], ρ = 1, |X1| = 2 and

|ba4
| = 8 in T , so that A12 has a presentation with 2 generators and 2+ 1+ 2 relations.

Once again,A12 is known to have a presentation with 2 generators and 7 relations [CoMo,
p. 67].
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(6) n + 2 = 23: T = 12PSL(3, 4) has a presentation with 2 generators and 2 relations
[CHRR1], ρ = 1, |X1| = 2 and |x1| = 5, so that Proposition 3.20 produces a presentation
of A23 with 2 generators and 2+ 2+ 1 relations.

(7) n+2 = 23: T = 6A7 has a presentation with 2 generators and 2 relations [CRKMW],
n =

(7
2

)
, ρ = 2, |X1| = 2 and |x1| = 5, so that A23 has a presentation with 2 generators

and 2+ 2+ 2 relations.

(8) n + 2 = 24: T = 12M22 has a presentation with 2 generators and 2 relations
[CHRR1], ρ = 1, |X1| = 2 and |x1| = 7, so that Proposition 3.20 produces a presentation
of A24 with 2 generators and 2+ 2+ 1 relations.

(9) If p > 3 is prime then Ap+3 × SL(2, p) has a presentation with 2 generators and 4
relations: apply Proposition 3.20 using (3.19) and |R| = 2 = |X1|, ρ = 1, x1 = y. It
follows that Ap+3 has a presentation with 2 generators and 5 relations. We will need this
below in (11), including the fact that g3 has order p and fixes p + 2.

(10) n+2 = 47: T = A10 has the following presentation with 2 generators and 3 relations
[Hav]:

A10 = 〈a, b | a
3b−1ab−1a3ba2b = a2b−1a5b−3a3

= a−2bab−1aba3bab−1aba−2b−1
= 1〉,

with |a| = 15, |b| = 12 and |ab| = 8. View T as acting on
(10

2

)
unordered pairs with

ρ = 2, |X1| = 2 and x1 = ab, so that Proposition 3.20 produces a presentation of A45+2
with 2 generators and 2+ 2+ 2 relations.

At present there is no known presentation for 2A10 with 2 generators and 2 relations.
It would lead to a presentation for A47 with 2 generators and 5 relations.

(11) If p > 3 is prime thenA
(p+3

2 )+2 has a presentation with 2 generators and 8 relations.

For, let T = Ap+3 × SL(2, p) act on
(
p+3

2

)
unordered pairs of a set of size p + 3, with

SL(2, p) acting trivially. Apply Proposition 3.20 using (9), with |X| = 2, |R| = 4, ρ = 2,
|X1| = 2 and x1 = g

3.
There is a similar presentation for A

(p+2
2 )+2.

(12) For any prime p ≡ 11 (mod 12), A2p+2 has a presentation with 2 generators and 6
relations. We will vary the argument in Proposition 3.20 (and Lemma 3.2), using the tran-
sitive subgroup T := AGL(1, p)(2)×〈t〉 of the transitive group AGL(1, p)× 〈t〉 of degree
2p, where t is an involution interchanging two blocks of size p (namely, {0, . . . , p − 1}
and its image under t). Note that the stabilizer of a point is cyclic of odd order (p− 1)/2.
Moreover, T has ρ = 3 orbits of unordered pairs of the 2p-set, with orbit-representatives
{0, t (0)}, {0, 1}, and {0, t (1)} (note that the stabilizer in T of {0, t (1)} is trivial). Clearly
T is not in A2p; if w ∈ T then sign(w) will refer to the action of w on these 2p points.

We view T as a subgroup of A2p+2 preserving the set consisting of two new points
2p + 1 and 2p + 2, with each member of the set AGL(1, p)(2)t of odd permutations on
the 2p-set interchanging these points.
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Let

J := 〈a, g | a2p
= b(p−1)/2, (as)b = as−2, (zzsign(wi )wi )2 = 1 for i = 1, 2, 3〉,

where s(r − 1) ≡ −2 (mod p) with s odd, F∗p2
= 〈r〉, b := g3, z := g(p−1)/2, and

with suitable words w1, w2, w3 ∈ T (such that the pairs {z, zwi } are in different T -orbits
on zT ; e.g., {z, zt }, {z, za } and {z, zat }). As in the proof of Proposition 3.20, using Ex-
ample 3.4(5) we find that A2p+2 × T satisfies our presentation.

As usual, using Example 3.4(5) we can view T as the subgroup 〈a, b〉 of J . Exactly
as in Lemma 3.2 (and Proposition 3.20), |z| = 3, |zT | = 2p, and (zzg)2= (z−tz−gt )2= 1
for all g ∈ AGL(1, p)(2) with zg 6= z, while (zz−gt )2 = 1 for all g ∈ AGL(1, p)(2).

Then N := 〈zT 〉 ∼= A2p+2 by (3.1), and hence J = NT ∼= A2p+2 × T . One further
relation gives a presentation of A2p+2 with 2 generators and 2+ 3+ 2 relations.

Explicitly,

A2p+2 = 〈a, g | a
2p
= b(p−1)/2, (as)b = as−2,

(zz−t )2 = (zza )2 = (zz−at )2 = 1, (bza
−1
za za

−1tzat )p = 1〉,

with z, r and s as above and once again b := g3, z := g(p−1)/2 and t := ap, where the
last relation is obtained as in the proof of Corollary 3.7.

(13) For any odd prime p ≡ 2 (mod 3), A2p+2 has a presentation with 2 generators and
7 relations. Unlike in the preceding example we now handle the case p ≡ 1 (mod 4)
using T = AGL(1, p). Let a, b, r and s be as in Example 3.4(2). Note that c := ab2 fixes
n := (1− r2)−1, and that c̃ := ba

−n
satisfies c̃2

= c.
Let T act transitively on the 2p cosets of 〈c2

〉. This action of T has 2 blocks: {ai〈c2
〉 |

0 ≤ i < p} and {ai c̃〈c2
〉 | 0 ≤ i < p}. There are 4 orbits of unordered pairs of

points, with representatives {〈c2
〉, a〈c2

〉}, {〈c2
〉, ar 〈c2

〉}, {〈c2
〉, c̃〈c2

〉} and {〈c2
〉, ac̃〈c2

〉}.
Let “1” := 〈c2

〉.
We replace the presentation for T in Example 3.4(2) by

T = 〈c, b | (cb−2)p = bp−1, ((cb−2)s)b = (cb−2)s−1
〉.

Once again we view T as a subgroup of A2p+2 preserving the set consisting of the addi-
tional points 2p+ 1 and 2p+ 2. Signs will again refer to the actions of elements of T on
the 2p-set.

Consider the group

J := 〈g, b | (cb−2)p = bp−1, ((cb−2)s)b = (cb−2)s−1, (zzsign(wi )wi )2 = 1
for i = 1, 2, 3, 4〉,

where c := g3, z := g(p−1)/2, and {1, w−1
i (1)}, 1 ≤ i ≤ 4, are representatives for the

orbits of T on pairs of the 2p points. Then J surjects onto A2p+2 × T , and we can view
T = 〈c, b〉 ≤ J . In particular, |g| = 3(p − 1)/2, and hence z3

= 1.
Since c centralizes z, as usual we obtain |zT | = 2p and 〈zT 〉 ∼= A2p+2 by (3.1), and

then J ∼= A2p+2 × T . One further relation produces the desired presentation of A2p+2.
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Examples 3.22. We conclude with additional examples of Proposition 3.20, this time
using a presentation involving An to deduce one involving An+2. Specifically, in Propo-
sition 3.20(ii) assume that T = 〈X | R〉 is “essentially” An, with ρ = 1, |X1| = 2 and a
suitable x1. Then An+2 × T has a presentation with |X| generators and |R| + 1 + 2 − 1
relations. This idea was already used in Example 3.21(11).

(1) For any prime p ≡ 11 (mod 12), Ap+4 has a presentation with 2 generators and 6
relations. For, we can use Corollary 3.8(i) in order to obtain a presentation for Ap+4 ×

(Ap+2×AGL(1, p)(2)) with 2 generators and 3+ 2 relations (note that x1 := a has order
p in that corollary).
(2) For any prime p > 3, Ap+5 has a presentation with 2 generators and 7 relations. For,
we can use Example 3.21(9) to obtain a presentation for Ap+5× (Ap+3× SL(2, p)) with
2 generators and 4+ 2 relations (x1 := x has order 4 in that example).

3.3. Gluing alternating and symmetric groups

We now turn to all alternating and symmetric groups, starting with a general gluing
lemma:

Lemma 3.23. Let G = 〈X | R〉 and Ḡ = 〈X̄ | R̄〉 be presentations of Sn and Sm,
respectively, and let m, n > k ≥ l + 2 ≥ 4. Consider embeddings π : G→ Sm+n−k and
π̄ : Ḡ→ Sm+n−k into Sym{−m+ k + 1, . . . , n} such that

π(G) = Sym({1, . . . , n}) and π̄(Ḡ) = Sym({−m+ 1+ k, . . . , k}).

Suppose that a, b, c, d ∈ G and ā, b̄, c̄, ē ∈ Ḡ, viewed as words in X or X̄, respectively,
are nontrivial permutations such that the following all hold:

• π(a) = π̄(ā) ∈ Sym({1, . . . , l}) < π(G) ∩ π̄(Ḡ),

• π(b) = π̄(b̄) ∈ Sym(l + 1, . . . , k) < π(G) ∩ π̄(Ḡ),

• π(c) = π̄(c̄) ∈ Sym({1, . . . , k}) < π(G) ∩ π̄(Ḡ),

• π(d) ∈ Sym({l + 1, . . . , n}) < π(G),

• π̄(ē) ∈ Sym({−m+ 1+ k, . . . , l}) < π̄(Ḡ),

• 〈π(a), π(c)〉 = Sym({1, . . . , k}) < π(G) ∩ π̄(Ḡ),

• 〈π(b), π(d)〉 = Sym({l + 1, . . . , n}) < π(G),

• 〈π̄(ā), π̄(ē)〉 = Sym({−m+ 1+ k, . . . , l}) < π̄(Ḡ).

Then
J := 〈X, X̄ | R, R̄, a = ā, c = c̄, [d, ē] = 1〉 (3.24)

is isomorphic to Sm+n−k = Sym{−m+k+1, . . . , n}, where 〈X〉 = Sn acts on {1, . . . , n}
and 〈X̄〉 = Sm acts on {−m+ 1+ k, . . . , k}.

The following picture might be helpful.
−m+ k + 1, . . . , 0 1, . . . , l l + 1, . . . , k k + 1, . . . , n

a = ā b = b̄

c = c̄

ē d
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Note that b and b̄ do not appear in the presentation, but we need to know that such ele-
ments exist.

Proof. The restrictions onm, n, k and l are designed to guarantee that the desired permu-
tations exist. There is an obvious surjection J → Sm+n−k (note that our 3 extra relations
are satisfied). By Lemma 2.1, J has subgroups we identify with G = 〈X〉 = Sn and
Ḡ = 〈X̄〉 = Sm.

In particular, our relations state that a = ā and c = c̄ in J . Then the assumption
π(b) = π̄(b̄) states that b and b̄ represent the same element of 〈a, c〉 = 〈ā, c̄〉, so that the
additional relation b = b̄ is forced to hold in J . Then we also have the following relations
in J :

• [d, ā] = [d, a] = 1 because d, a ∈ G = Sn have disjoint supports,
• [d, ē] = 1 by the last relation in the presentation (3.24),
• [b, ā] = [b, a] = 1 because b, a ∈ G have disjoint supports,
• [b, ē] = [b̄, ē] = 1 because b̄, ē ∈ Ḡ have disjoint supports.

Therefore
[〈b, d〉, 〈ā, ē〉] = 1, (3.25)

where 〈b, d〉 = Sym({l + 1, . . . , n}) and 〈ā, ē〉 = Sym({−m+ 1+ k, . . . , l}).
The symmetric groups G and Ḡ are generated, respectively, by the n − 1 and m − 1

transpositions xi := (i, i + 1), 1 ≤ i < n, and xi := (i, i + 1), −m + 1 + k ≤ i < k.
The identification of the two copies of Sk = 〈a, c〉 = 〈ā, c̄〉 in (3.24) identifies the trans-
positions xi , 1 ≤ i < k, common to these generating sets, producing a generating set of
J consisting of m + n − k − 1 involutions. These involutions satisfy the relations in the
Coxeter presentation [Moo]

Sm+n−k = 〈xi,−m+ 1+ k ≤ i < n | x2
i = (xixi+1)

3
= (xixj )

2
= 1

for all possible i, j with j − i ≥ 2〉:

any two xi either both lie in G, or both lie in Ḡ, or they commute by (3.25) since one is
in 〈b, d〉 and the other is in 〈ā, ē〉. ut

Remark 3.26. Although the preceding presentation may not even have bit-length
O(log n), there is a great deal of flexibility in the choice of the elements a, b, c, d,
ā, b̄, c̄, ē for this and other purposes (cf. Remarks 3.11 and 3.16, Proposition 3.38 and
Theorem 3.40). The last three relations in (3.24) are similar to ones appearing in the
proof of [GKKL1, Theorem 3.17]; and they are used both there and here in essentially
the same manner. However, the situation in that paper was more delicate, due to length
considerations.

We have just glued presentations of symmetric groups using |R| and |R̄| relations in
order to obtain a presentation of a larger symmetric group using |R| + |R̄| + 3 relations.
The next lemma does the same for alternating groups. In particular, bounded presentations
lead to further bounded presentations for these types of groups; together with small bit-
length (cf. Remarks 3.11 and 3.16), this may suffice for some purposes. However, since
we wish to use as few relations as we can, in Corollary 3.28 we will deduce R̄ as a
conjugate R̄ = Ry .
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Lemma 3.27. A presentation of Am+n−k is obtained as in the preceding lemma by re-
placing symmetric groups by alternating groups throughout (3.24) and assuming that
m, n > k ≥ l + 3 ≥ 6.

Proof. Once again, the restrictions on m, n, k and l are designed to guarantee that the
desired permutations exist. The previous picture can again be used. As in the proof of the
preceding lemma, (3.24) implies that (3.25) holds.

We will use the presentation (3.1), this time with the union of the generating sets
xi := (1, 2, i) forG and xj := (1, 2, j) for Ḡ, where 3 ≤ i ≤ n and−m+1+k ≤ j ≤ k
but j 6= 1, 2. As above, (3.24) implies that (1, 2, i) = (1, 2, i) if 3 ≤ i ≤ k.

Then all required relations in (3.1) are immediate except for(
(1, 2, i)(1, 2, j)

)2
= 1 with k < i ≤ n and −m+ 1+ k ≤ j ≤ 0.

Recall that 〈b, d〉 = Alt({l + 1, . . . , n}), where 6 ≤ l + 3 ≤ k < i ≤ n. Then some
g ∈ 〈b, d〉 sends k to i and fixes 1 and 2. By (3.25), g commutes with (1, 2, j) ∈ 〈ā, ē〉.
Consequently,[(

(1, 2, i)(1, 2, j)
)2]g
=
(
(1, 2, k)(1, 2, j)

)2
=
(
(1, 2, k) (1, 2, j)

)2
= 1

(note that k 6= j since j ≤ 0 < k). Thus, (3.1) holds in all cases. ut

Corollary 3.28. If Am has a presentation with M relations and if m > k ≥ 6, then
A2m−k has a presentation with M + 4 relations. The same holds for the corresponding
symmetric groups using the weaker assumption m > k ≥ 4.

Proof. Let G = 〈X | R〉 be a presentation for Am with M relations. In Lemma 3.27 we
use m = n and l = 3, but this time we introduce an additional generator y corresponding
to an even permutation sending {−m + 1 + k, . . . , k} to {1, . . . , m} and inducing the
identity on {1, . . . , k}.

Consider the group

J := 〈X, y | R, a = ay, c = cy, [d, ey] = 1〉, (3.29)

with a, b, c, d, ā := ay, b̄ := by, c̄ := cy, ē := ey playing the same roles as in
Lemma 3.27 (in particular, as in Lemma 3.23 they are words in X ∪ X̄ where X̄ := Xy).
By Lemma 3.23 with R̄ := Ry , J has a subgroup K := 〈X,Xy〉 ∼= A2m−k .

Finally, we add an extra relation to (3.29), expressing y as a word w in X ∪ Xy ,
in order to ensure that our generator y is in K and that, as an element of A2m−k =

Alt({−m+ k + 1, . . . , m}), the action of y is as described above.
The group S2m−k is dealt with in the same manner. ut

Remark 3.30. We have just glued two subgroups Am in order to obtain a group A2m−k ,
or two subgroups Sm in order to obtain a group S2m−k , in each case with suitable restric-
tions onm and k. There is a variation on this process that glues two subgroups Sm in order
to obtain a group A2m−k (view Sm as lying in Am+2, as occurred in Section 3.1).
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3.4. All alternating and symmetric groups

Before proving Theorem C, we begin with a weaker result:

Proposition 3.31. For all n ≥ 5, An and Sn have presentations with 3 generators and
10 relations.

Proof. If n ≤ 9 then we have already obtained a presentation with fewer relations than
required. By Ramanujan’s version of Bertrand’s Postulate [Ra], in all other cases we can
write n = 2p + 4− k for a prime p and an integer k such that m := p + 2 > k ≥ 6, and
then use Corollaries 3.7, 3.13(i) and 3.28. (A related use of Bertrand’s Postulate appears
in [GKKL1, Theorem 3.9].) ut

This proposition is weaker than Theorem C in two significant ways: the number of re-
lations is larger than in that theorem, and bit-length is not mentioned. We deal with the
second of these as follows:

Lemma 3.32. In Corollary 3.28 and Proposition 3.31, assume that either

(i) the group is An = A2m−k, or
(ii) the group is Sn = S2m−k and we used a prime p ≡ 11 (mod 12).

Then it is possible to choose a, c, d, e such that a represents a 3-cycle and the resulting
presentation has bit-lengthO(log n) with a bounded number of exponents, each of which
is at most n.

Proof. In Lemmas 3.23 and 3.27 and Corollary 3.28 we can choose each of the elements
a, c, d, e to represent a product of a cycle of the form (i, . . . , j) with i < j and a permu-
tation having bounded support. (When we give explicit relations in Section 3.5(4), each of
these permutations will be chosen to be a cycle.) We require a to represent a 3-cycle; and
then in the symmetric group case (ii) we also need c and e to represent odd permutations
(cf. the hypotheses of Lemma 3.23).

By Remarks 3.11 and 3.16, in both (i) and (ii) we can choose a, c, d, e to have bit-
length O(log n) and with exponents as required. It remains to show that the permutation
represented by y can be chosen to meet the requirements in Corollary 3.28: the crucial
relation expressing y as word in X ∪ Xy must have bit-length O(log n), with exponents
as required.

There is a reasonable amount of flexibility in the choice of y in Corollary 3.28; we
will view y as a permutation and choose y ∈ An. In that corollary we were permuting the
n = 2p + 4− k points (recall that m = p + 2)

−p − 1+ k,−p + k, . . . ,−1, 0; 1, . . . , k; k + 1, k + 2, . . . , p + 1, p + 2, (3.33)

where we have alternating or symmetric groups on the first and last p+ 2 points, with an
Ak or Sk on the overlap.

If p − k is even, choose y to be the following product of p + 2− k transpositions:

y := (−p − 1+ k, p + 2)(−p + k, p + 1) · · · (−1, k + 2)(0, k + 1). (3.34)

We must write y as a word of the required bit-length in X ∪ Xy . We use the following
additional permutations:
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• x := (−1, k + 2)(0, k + 1) = [(1, k + 2)(2, k + 1)](−1,1)(0,2), which we have written
using permutations from our two copies of Ap+2;
• u−1 := (1, . . . , k, k + 1, . . . , p + 2)(1, . . . , k, 0,−1, . . . ,−p + k − 1)

= (1, . . . , k, k + 1, . . . , p + 2)(1, . . . , k, k + 1, . . . , p + 2)y .

By Remark 3.11, u and hence also s can be expressed as a word of bit-lengthO(logp) in
X ∪Xy using a bounded number of exponents; then, by (3.17), so can

y = xxu
2
xu

4
· · · xu

p−k

= (xu−2)(p−k)/2xup−k. (3.35)

If p− k is odd let v := (−p− 1+ k, p+ 2)(−p+ k, p+ 1) · · · (−3, k+ 4) and use

y := v(−2, k + 3)(−1, k + 2, 0, k + 1)
= v[(2, k + 3)(1, k + 2, k, k + 1)](2,−2)(1,−1)(0,k)(1,2).

(3.36)

Then v can be expressed as a word of bit-length O(logp) in X ∪ Xy using a calculation
similar to (3.35), and the final term in the bottom line of (3.36) is a product of permuta-
tions from our two copies of Ap+2. Another application of Remark 3.11 completes the
proof. ut

Remark 3.37. Every cycle (k, k+ 1, . . . , l) in An, and every element with bounded sup-
port in An, has bit-length O(log n) in our generators, by yet another application of Re-
mark 3.11. Similar statements hold for symmetric groups in the situation of Remark 3.16.

With a bit more number theory, together with Table 2, we obtain an improvement of
Proposition 3.31 that is needed for Theorem C:

Proposition 3.38. If n ≥ 5 then Sn and An have presentations with 3 generators, 8
relations and bit-length O(log n). Moreover, these presentations use a bounded number
of exponents, each of which is at most n.

Proof. We refine the argument in Proposition 3.31. First consider Sn. Here we need to
write n = 2p+4−k for a prime p ≡ 2 (mod 3) such thatm := p+2 > k ≥ 4, so that we
can use Corollaries 3.13 and 3.28, and then continue as in the proof of Proposition 3.31.
In view of the requirements on bit-length and exponents, we also require that p ≡ 11
(mod 12) when n is not bounded, so that Lemma 3.32 will complete the proof for Sn.

The requirements on p are that n/2 ≤ p ≤ n − 3 and, in general, p ≡ 11 (mod 12).
The existence of such a prime p is guaranteed by Dirichlet’s Theorem for large n. How-
ever, we need a more precise (and effective) result of this type. This is provided in [Mor]
(updating [Bre, Er, Mol] with more precise estimates): if n ≥ 50 then there is such a
prime p ≡ 11 (mod 12). A straightforward examination when n < 50 leaves the cases
n ≤ 7 and n = 11, 12 or 13—since for small n we only need the requirement p ≡ 2
(mod 3)—and these were dealt with earlier.

For An we need to write n = 2p + 4 − k for a prime p ≡ 11 (mod 12) such that
m := p + 2 > k ≥ 6, then use Corollaries 3.8 and 3.28, and again finish as in the proof
of Proposition 3.31 by using Lemma 3.32. This time (n + 2)/2 ≤ p ≤ n − 3. Once
again, by [Mol, Mor], if n ≥ 50 then there is such a prime p. Another straightforward
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examination leaves the cases n ≤ 13 and n = 21, 22, 23, 24, 25, 45, 46, 47, 48 or 49 to
deal with. The cases in which n = p + 2 or p + 3 for some prime p are handled in
Corollary 3.7 and Example 3.4(1), and Table 2 deals with the remaining cases. ut

For the next theorem we will use a presentation in the preceding proposition that is valid
for most n. If n ≥ 50 (or, more precisely, if n is not one of the exceptions mentioned in the
above proof), then (3.29) together with one further relation y = w is such a presentation:

An or Sn = 〈X, y | R, a = ay, c = cy, [d, ey] = 1, y = w〉, (3.39)

with 〈X | R〉 in (3.9) or (3.14) for the cases An or Sn, respectively, a, c, d, e words in X
as in Lemma 3.32, and a suitable word w in X ∪Xy as in (3.34)–(3.36). (The properties
required of w are described at the end of the proof of Corollary 3.28 and, in gory detail,
in the proof of Lemma 3.32. Alternatively, see Section 3.5(6).)

We are now able to prove the main part of Theorem C:

Theorem 3.40. If n ≥ 5 then Sn and An have presentations with 3 generators, 7 rela-
tions and bit-length O(log n). Moreover, these presentations use a bounded number of
exponents, each of which is at most n.

Proof. Let n = 2m − k with m := p + 2 > k ≥ 6 for a prime p (cf. the preceding
proposition; below we will discuss the existence of a suitable p).

Let G := 〈X | R′〉 be the group presented in Corollary 3.8(i) or 3.13(ii), so that
|X| = 2, |R′| = 3 and one of the following holds:

An case : T = AGL(1, p)(2), p ≡ 11 (mod 12), G ∼= Am × T ;
Sn case : T = AGL(1, p), p ≡ 2 (mod 3), G/(1× (T ∩ Am)) ∼= Sm.

(In the An case, T has index 2 in AGL(1, p); in the Sn case, G has index 2 in Sm × T .)
We also require that p ≡ 11 (mod 12) in the Sn case when n ≥ 50, in order to obtain the
desired bit-length.

Further background concerning G. Despite the fact that we have been dealing with
groups such as T and G for a while, we need further properties and notation involving
these groups.

The relations R′ and the relations R in (3.39) are closely connected:

R = R′ ∪̇ {h = 1}, where h is a word in X that represents the
element (1, t) ∈ Sm × T on the right side of (3.10) or (3.15).

Thus, h = 1 is the relation used to kill the normal subgroup 1 × (T ∩ Am) of G that is
not inside our target group An or Sn, and t = b or b2 has order (p− 1)/2. Below we will
need the fact that 3 does not divide the order of t (since (3, p − 1) = 1). This property
was already crucial for obtaining the presentation G = 〈X | R′〉.

The presentation (3.39) can now be rewritten

An or Sn = 〈X, y | R′, h, a = ay, c = cy, [d, ey] = 1, y = w〉, (3.41)

with 3 generators, 8 relations and bit-length O(log n).
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There was a great deal of freedom in our choice of the words a, b, c, d, e in Corol-
lary 3.28 (cf. (3.29)). We will choose a to represent a 3-cycle in the alternating or sym-
metric group G/(1× (T ∩ Am)) (cf. Lemma 3.32).

Let ϕ : FX → G ≤ Sm×T be the surjection in the proof of Corollary 3.8(i) or 3.13(ii)
(cf. (3.3)). We use the following ingredients:

• h ∈ FX is, as above, the word on the left side of (3.10) or (3.15), so that ϕ(h) = (1, t);
• a ∈ FX with ϕ(a) = (a1, ∗) for a 3-cycle a1 ∈ Am;
• ã, â ∈ FX such that ϕ(ã) = (a1, 1) and ϕ(â) = (a1, t).

This completes the additional background concerning G. We claim that the 7-relator
group

J := 〈X, y | R′, ã = ây, c = cy, [d, ey] = 1, y = w〉 (3.42)

is isomorphic to the group in (3.41).
For, there is a natural surjection ψ : FX∪{y} → J . It suffices to show that the image

of ψ satisfies (3.41): ψ(h) = 1 and ψ(â) = ψ(â)ψ(y for the word â in X that represents
a1 ∈ Am (i.e., in (3.41) we are replacing a by â).

There is also a surjection π : G→ ψ(〈X〉) such that ψ = πϕ on FX (since ψ(〈X〉)
satisfies the defining relations of G = 〈X | R′〉). Since (a1, 1) has order dividing 3, so
do π((a1, 1)) = πϕ(ã) = ψ(ã) = ψ(ây) = πϕ(â)ψ(y) = π((a1, t))

ψ(y), π((a1, t))

and hence also π((1, t)). We already noted that 3 does not divide the order of t , so that
ψ(h) = πϕ(h) = π((1, t)) = 1. Consequently, ψ(â) = πϕ(â) = π((a1, 1))π((1, t)) =
π((a1, 1)) = πϕ(ã) = ψ(ã) = ψ(â)ψ(y). Thus, the image of ψ satisfies (3.41), as
claimed.

Bit-length: As in the proof of Theorem 3.31, we may assume that the words a, c, d and e
have bit-lengthO(log n). In Corollaries 3.8(i) and 3.13(ii) the generators of 1× (T ∩Am)
have bit-length O(log n) in X, hence ã and â can be chosen so that the same is true for
these elements.

Finally, we need to discuss whether we have handled all of the groups An and Sn; or,
what amounts to the same thing, for which n a prime p can be found satisfying all of the
conditions we have imposed.

As in Proposition 3.38, (3.42) takes care of An except if n ≤ 13 or n = 21, 22, 23,
24, 25, 45, 46, 47, 48, 49; and these are handled exactly as in that proposition.

For the Sn case we have imposed a further condition beyond what was used in Propo-
sition 3.38: we need to write n = 2p + 4 − k for a prime p ≡ 2 (mod 3) such that
m = p + 2 > k ≥ l + 2 ≥ 5, and p ≡ 11 (mod 12) if n is not bounded. (The conditions
in Corollary 3.28 were that m = p + 2 > k ≥ l + 2 ≥ 4, but here we need to be able
to find a 3-cycle a1 in Al .) Once again these requirements can be met for all n except if
n ≤ 7 or n = 9, 10, 11, and those cases can be handled as before. ut

No presentation in this or the preceding section has length O(log n).
By Remarks 3.11 and 3.16, the exponents in (3.35) are all less than n. As already

noted, these presentations have bounded expo-length (cf. Section 2). See Remark 7 in
Section 11 for comments concerning the boundedness of expo-length for other families
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of almost simple groups. Since it is natural to prefer specific generators (such as the fa-
miliar ones (1, 2) and (1, 2, . . . , n)), we note the following consequence of the preceding
theorem and Lemma 2.3:

Corollary 3.43. Let G = An or Sn, n ≥ 5.

(i) If a and b are any generators of G, then there is a presentation of G using 2 genera-
tors that map onto a and b, and 9 relations.

(ii) There is a presentation for G using 2 generators and 8 relations.

Proof. Part (i) follows from Theorem 3.40 and Lemma 2.3 since |π(X) ∩D| ≥ 0.
For (ii), note that we have provided a presentation 〈X | R〉 for G such that some

element of X projects onto an element a ∈ G that is either a 3-cycle (z in Lemma 3.2)
or has a power that is a 3-cycle (such as g in Corollary 3.8(ii) or Proposition 3.20). Let b
be any element of G such that G = 〈a, b〉. Now use D = {a, b} in Lemma 2.3 (compare
Section 11, Remark 4). ut

Remark 3.44. The preceding presentations are not short in any sense. In the case of the
pair {a, b} = {(1, 2), (1, 2, . . . , n)}, the bit-length is O(n log2 n). For, by Remark 3.37
these generators a and b have bit-length O(log n) in the generators used in the Theorem.
Also, since all cycles (1, 2, . . . , k), 2 ≤ k ≤ n, have length O(log n) in {a, b} (us-
ing (3.17)), induction shows that all elements of Sn have bit-length O(n log n) in {a, b}.
Hence, by the proof of Lemma 2.3, the presentation has the stated length. This should
be compared to Theorem A2 in the Appendix, which implies that any presentation using
these generators a and b has length (not bit-length) at least 2n if n > 2.

3.5. An explicit presentation for Sn

The presentations in Sections 3.1 and 3.2 are not difficult to understand, and they vis-
ibly encode information concerning various alternating or symmetric groups. However,
the presentations in Theorem 3.40 are not as explicit as one might wish. Therefore, we
will provide a presentation of Sn for n odd (see Remark 3.45 for even n). Although this
presentation is in no sense elegant or informative, it has the advantage of being explicit
while using only 7 relations and having bit-length O(log n).

We will use a prime p ≡ 11 (mod 12) such that n− 3 ≥ p ≥ (n+ 2)/2. (This places
a mild restriction on n, as seen in the proof of Theorem 3.40. For n ≥ 50 there is always
such a prime.)

Let k = 2p + 4− n, so that p + 2 > k ≥ 6. Then k ≡ n ≡ 1 (mod 2), so that p − k
is even.

The desired presentation is

Sn = 〈a, g, y | ap = (g3)p−1, (as)g3
= as−1,

(gp−1(gp−1)a)2 = 1, a = ây, c = cy, [d, ey] = 1, y = w〉,

for words a, c, d, e, â, w defined below and integers r and s such that s(r − 1) ≡ −1
(mod p) and F∗p2

= 〈r〉.
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Notes: We write a and b in order to distinguish the uses of these letters in Sections 3.1
and 3.2 from those in Sections 3.3 and 3.4.

The permutations in Sn indicated below are not part of the presentation, but are
provided in order to help keep track of the map 〈a, g, y〉 → Sn onto the symmetric
group on the n points listed in (3.33). We view AGL(1, p) as acting on {1, . . . , p} with
a ≡ (1, . . . , p) ∈ AGL(1, p), but we use p in place of 1 in Lemma 3.2.

The notation used here should not be viewed mod p; in particular, 0 and p are differ-
ent.

(1) z := gp−1
≡ (p, p + 1, p + 2),

b := g3 (so that 〈a,b〉 is AGL(1, p) as in (3.6)),
y ≡ (−p − 1+ k, p + 2)(−p + k, p + 1) · · · (−1, k + 2)(0, k + 1).

(2) z(i) := za−i
≡ (i, p + 1, p + 2) for 1 ≤ i ≤ p,

c(i, j) := z(i)z(j)−1z(i) ≡ (i, j)(p + 1, p + 2) for 1 ≤ i < j ≤ p,
ci := (c(1, 2)a)i−2c(1, 2)a−(i−2)

≡ (1, 2, . . . , i) whenever i is odd with 3 ≤ i ≤ p
(cf. (3.17)).

(3) (Constructing a transposition as in Remark 3.16.)
b2 := b(p−1)/2

≡ (1, p − 1)(2, p − 2) · · · ((p − 1)/2, p − (p − 1)/2),
c• := c(p−1)/2c

−a(p+1)/2

(p−1)/2 ≡ (1, 2, . . . , (p − 1)/2)(p − 1, p − 2, . . . , p − (p − 1)/2),
v := (c(1, p − 1)c−1

• )
(p−1)/2c(1, p − 1)

≡ (1, p− 1)(2, p− 2) · · · ((p− 1)/2, p− (p− 1)/2)(p+ 1, p+ 2) (cf. (3.17)),
t := vb2c(1, 2) ≡ (1, 2).

(4) a := z(3)z(1)z(2) ≡ (1, 2, 3),
c := tck ≡ (2, . . . , k) (an odd permutation),
d := c−1

3 az ≡ (3, . . . , p + 2),
e := ac−1

k tz ≡ (1, 2, k + 1, . . . , p, p + 1, p + 2),
so that ey

≡ (1, 2, 0,−1, . . . ,−p + k − 1) (odd permutations).
(5) â := a(b2z(1)z(−1))(p+1)/2 as in (3.15).
(6) x := [c(1, k + 2)c(2, k + 1)]c(1,k+2)yc(2,k+1)y

≡ (−1, k + 2)(0, k + 1),
u−1 := (az)(az)y
≡ (1, . . . , k, k+1, k+2, . . . , p, p+1, p+2)(1, . . . , k, 0,−1, . . . ,−p+k−1),

w := (xu−2)(p−k)/2xup−k

≡ (−p−1+k, p+2)(−p+k, p+1) · · · (−1, k+2)(0, k+1) ≡ y (cf. (3.17)).

Remarks 3.45. 1. In the isomorphism given by (3.3), z maps to an element of Ap+2× 1.
Hence, the element a defined above also maps into Ap+2 × 1, so that the element ã used
in (3.42) is just our a. The remainder of the presentation given above is a straightforward
translation from Section 3.4.

2. A presentation for the alternating groups is similar but slightly simpler: only even
permutations are involved.

3. Changes needed when n and k are even:

(4′) c := ck−1t ≡ (1, . . . , k) (an odd permutation),
e := atc−1

k−1z ≡ (1, k + 1, . . . , p + 2) (another odd permutation).
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(6′) w := taztazy taz(xu−2)(p−k−1)/2xup−k−1

≡ (−p − 1+ k, p + 2)(−p + k, p + 1) · · · (−1, k + 2)(0, k + 1) ≡ y
as before.

3.6. Weyl groups

It is easy to use Theorem 3.40 to obtain presentations for the Weyl groups of types Bn or
Dn (cf. Lemma 3.47). Instead we begin with a subgroup Wn of those Weyl groups that is
needed in Section 10.

Let Wn := Zn−1
2 o An be the subgroup of the monomial group of Rn such that Zn−1

2
consists of all ±1 diagonal matrices of determinant 1, and the alternating group An per-
mutes the standard orthonormal basis of Rn. We will write elements ofW as permutations
of {1, . . . , n,−1, . . . ,−n}.

Proposition 3.46. If n ≥ 4 then Wn has a presentation with 4 generators, 11 relations
and bit-length O(log n). If n = 4 or 5 then Wn also has a presentation with 3 generators
and 7 relations.

Proof. Let 〈X | R〉 be the presentation for A = An in Theorem 3.40 (or (3.1) or [CoMo,
p. 137] when n = 4 or 5 in order to have a presentation with 2 generators and 3 relations).
Let σ = (3, 2, 1) ∈ A, and let X12 consist of two words in X such that 〈X12〉 is the
stabilizer of the 2-set {1, 2}. We will show that Wn is isomorphic to the group J with the
following presentation.

Generators: X, s (where s represents (1,−1)(2,−2) = diag(−1,−1, 1, . . . , 1) ).

Relations:

(1) R.
(2) s2

= 1.
(3) [s,X12] = 1.
(4) ssσ sσ

2
= 1.

There is an obvious surjection π : J → Wn. We viewA = 〈X〉 ≤ J. By (3),
(
n
2

)
≥ |sA| ≥

|π(sA)| =
(
n
2

)
, so that sA can be identified with the 2-sets in I = {1, . . . , n}. Thus, there

are well-defined elements sij = sji ∈ sA for all distinct i, j ∈ I .
By (4), s1j sjksk1 = 1 whenever 1, j, k are distinct, so that A is generated by the

elements s1i . Since all sij are involutions, it follows that s = s12 commutes with all s1j ,
and hence also with all sjk , so that N := 〈sA〉 is elementary abelian of order ≤ 2n−1.
Then J = AN has order ≤ |Wn| and hence is Wn.

Now |X| + 1 and |R| + 4 are as stated. Bit-length is straightforward to check. ut

We will need another similar result in the next section:

Lemma 3.47. The Weyl group of type Bn has a presentation with 4 generators, 11 rela-
tions and bit-length O(log n).

Proof. Let 〈X | R〉 be the presentation in Theorem 3.40, let X1 consist of two words in
X such that 〈X1〉 is the stabilizer of the point 1, and let x ∈ X move 1.
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Then the Weyl group W is isomorphic to the group J := 〈X, y | R, y2
= [y2, X1] =

[y, yx] = 1〉. For,W is a surjective image of J , |yJ | ≤ n and N := 〈yJ 〉 is an elementary
abelian 2-group. Then J/N ∼= Sn and |N | ≤ 2n, as required. ut

Remark 3.48. Later we will need a similar group, Zn4 o An, with a similar presentation
using y4

= 1, with 4 generators, 11 relations and bit-length O(log n).

3.7. Aut(Fn)

One application of our results concerns the free group Fn:

Theorem 3.49. If n > 2 then Aut(Fn) has a presentation with 5 generators, 18 relations
and bit-length O(log n); and a presentation with 19 generators, 65 relations and length
O(log n).

We will use a presentation of a subgroup of index 2 in Aut(Fn) due to Gersten [Ger,
Theorem 2.8]. Let B = {b1, . . . , bn} be a basis of Fn, n > 2, and let “bar” interchange
x ∈ B and x−1. Gersten’s presentation uses generators Eab, a, b ∈ B ∪ B̄, a 6= b, b̄, and
the following relations:

(G1) E−1
ab = Eab̄.

(G2) [Eab, Ecd ] = 1 if a /∈ {c, d, d̄}; b /∈ {c, c̄}.
(G3) [Ebc, Eab] = Eac if a /∈ {c, c̄}.
(G4) wab = wāb̄ where wab = EbaEābEb̄a .
(G5) w4

ab = 1.

Here Eab is the Nielsen map a 7→ ab fixing all members of (B ∪ B̄)\{a, ā}.

Proof of Theorem 3.49. Let 〈Y | S〉 be the presentation of the Weyl group W in Lemma
3.47. We view W as acting on the set {i, ı̄ | 1 ≤ i ≤ n} in the obvious manner. Let σ and
τ be elements ofW , written as words in Y , that generate the stabilizer inW of both 1 and
{2, 2̄}, where σ(2) = 2. We also view a few specific permutations as words in Y .

We will show that Aut(Fn) is the group J having the following presentation.

Generators: Y, g (here g is Gersten’s E12).

Relations:

(1) S.
(2) gσ = g, gτ = g−1.
(3) [g, g(13)] = 1.
(4) [g, g(1,3)(2,4)] = 1.
(5) [g, g(1,1̄)(2,3)] = 1.
(6) [g(3,2,1), g] = g(2,3).
(7) gg(2̄,1̄,2,1)g(1,1̄)(2,2̄) = (1, 2, 1̄, 2̄).

The map sending g 7→ E12 and W to the obvious permutations of B ∪ B̄ maps J to
Aut(Fn). It is surjective since Aut(Fn) is generated by Nielsen transformations.
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As usual we can identify W with a subgroup 〈Y 〉 of J . Relations (2) imply that the
elements of gW can be labeled Eab as above. Since τ(2) = 2̄, (G1) holds.

Relations (G3) follow from (1), (2) and (6).
Relations (G2) fall into 6 orbits under the action of Wn, with representatives

[Eab, Ecd ] = [Eab, Ecb] = [Eab, Ecb̄] = [Eab, Eād ] = [Eab, Eāb] = [Eab, Eāb̄] = 1.

The first orbit follows from (4), while the second and third follow from (3) and (G1),
and the fourth follows from (5). Then E12 commutes with E32, E1̄3 and hence with E1̄2
using (6), which takes care of the fifth orbit. Finally, the sixth orbit follows from the fifth
and (G1).

Relation (7) implies that E12E21̄E1̄2 = (1, 2, 1̄, 2̄) = (1̄, 2̄, 1, 2) = E1̄2̄E2̄1E12̄, so
that (G4) and (G5) hold.

By Gersten’s presentation, N := 〈gW 〉 is (isomorphic to) a subgroup of Aut(Fn), and
N � J . Since J/N is an image of W in which (1, 2, 1̄, 2̄) is trivial by (7), |J/N | ≤ 2.
There is an obvious surjection FY∪{g} → Z2 sending g 7→ 1 and y 7→ det(y) ∈ Z2 for
y ∈ Y ⊂ W , where y is viewed as monomial matrix. Since all relations (1)–(7) lie in the
kernel of this map, |J/N | ≤ 2. Also, (1, 1̄) is in J\N , and its action on N is the same
as that of the automorphism of Fn sending b1 7→ b−1

1 and fixing all remaining members
of B. Hence, J ∼= Aut(Fn).

This is a presentation of Aut(Fn) with at most 4+ 1 generators, 11+ 7 relations and
bit-length O(log n). For the second presentation in the theorem, in Lemma 3.47 replace
Theorem 3.40 by [GKKL1, Theorem 3.17]. ut

Another presentation for Aut(Fn), with slightly more relations, can be obtained by com-
bining Lemma 3.47 with [AFV].

3.8. SL(n,Z)

A simpler application of Theorem 3.40 is to groups over Z:

Theorem 3.50. For all n ≥ 6, SL(n,Z) has a presentation with 4 generators and 16
relations.

Proof. We will use the following presentation for G = SL(n,Z), essentially due to
Nielsen and Magnus (cf. [Mil, p. 81]).

Generators: Eij , 1 ≤ i, j ≤ n, i 6= j .

Relations:

(1) [Eij , Ekm] = 1 whenever j 6= k and i 6= m.
(2) [Eij , Ejk] = Eik whenever i, j, k are distinct.
(3) (E12E

−1
21 E12)

2
= 1.

Let 〈X | R〉 be a presentation for T = An, which is embedded in SL(n,Z) as permutation
matrices. Let X12 be a pair of generators for the stabilizer of 1 and 2, viewed as words
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in X (as are the various permutations used below). Let J be the group with the following
presentation.

Generators: X, e (where e plays the role of E12).

Relations:
(1) R.
(2) e commutes with X12, e

(4,3,2), e(1,2,3), e(3,1,4) and e(1,3)(2,4).
(3) [e, e(3,2,1)] = e(4,3,2).
(4) (e(e(1,2)(3,4))−1e)2 = 1.

The usual argument, using the 4-transitivity of T , shows that J ∼= SL(n,Z) × T . One
further relation, killing an element of the form (1, t) for a 3-cycle t , produces the desired
presentation. This has 3+ 1 generators and 6+ 9+ 1 relations using the presentation in
Theorem 3.40. ut

In view of the Steinberg presentation, the groups SL(n, p) over prime fields Fp are ob-
tained in a uniform manner by adding the relation ep = 1 to the above presentation.
There are similar but easier presentations for n ≤ 5. Other groups over Z can be dealt
with similarly, using presentations in [War, Behr, St4].

4. Rank 1 groups

4.1. Steinberg presentation

Each rank 1 group G we consider has a Borel subgroup B = U o 〈h〉, with U a p-group.
There is an involution t (mod Z(G) in the case SL(2, q) with q odd) such that ht = h−1

(or ht = h−q if G is unitary). The Steinberg presentation for G [St3, Sec. 4] consists of
the following ingredients:

• a presentation for B,
• a presentation for 〈h, t〉,
• |U | − 1 relations of the form

ut0 = u1h0tu2, (4.1)

with u0, u1, u2 ∈ U\{1} and h0 ∈ 〈h〉 (one relation for each choice of u0).

4.2. Polynomial notation

Our groups will always come equipped with various elements having names such as u
or h. For any polynomial g(x) =

∑e
i=0 gix

i
∈ Z[x], 0 ≤ gi < p, define powers as

follows:
[[ug(x)]]h = (ug0)(ug1)h

1
· · · (uge )h

e

, (4.2)

so that
[[ug(x)]]h = ug0h−1ug1h−1ug2 · · ·h−1ugehe (4.3)

by “Horner’s Rule” [GKKL1, (4.14)] (compare (3.17)).
As in [GKKL1, Sec. 4.3], we need to be careful about rearranging the terms in (4.2)

when not all of the indicated conjugates of u commute.
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4.3. SL(2, q)

In [CRW2] there is a presentation for PSL(2, q)with at most 13 relations. We will provide
a presentation having fewer relations, based on the matrices

u =

(
1 1
0 1

)
, t =

(
0 1
−1 0

)
and h =

(
ζ−1 0

0 ζ

)
, (4.4)

where F∗q = 〈ζ 〉.

Theorem 4.5. SL(2, q) and PSL(2, q) have presentations with 3 generators, 9 relations
and bit-lengthO(log q). When q is even, PSL(2, q) has a presentation with 3 generators,
5 relations and bit-length O(log q).

Proof. If q ≤ 9 then SL(2, q) and PSL(2, q) have presentations with 2 generators and
at most 4 relations (e.g., [CoMo, pp. 137–138]). Assume that q > 9, and let k, l ∈ Z be
such that ζ 2k

= ζ 2l
+ 1 and Fq = Fp[ζ 2k] (as in [GKKL1, Section 3.5.1]).

Set d = gcd(k, l). Then Fq = Fp[ζ 2d ].
Let m(x) ∈ Fp[x] be the minimal polynomial of ζ 2d . If γ ∈ Fq , let gγ (x) ∈ Fp[x]

satisfy gγ (ζ 2d) = γ and deg gγ < degm.
We will show that G = SL(2, q) (or PSL(2, q); cf. relation (5) below) is isomorphic

to the group J having the following presentation.

Generators: u, t, h.

Relations:

(1) up = 1.
(2) uh

k
= uuh

l
= uh

l
u.

(3) [[um(x)]]hd = 1 in the notation of (4.2).
(4) uh = [[ugζ2 (x)]]hd .
(5) [t2, u] = 1 (or t2 = 1 in the case PSL(2, q) with q odd).
(6) ht = h−1.
(7) t = uutu.
(8) ht = [[ugζ−1 (x)]]hd [[ugζ (x)]]t

hd
[[ugζ−1 (x)]]hd .

Matrix calculations using (4.4) easily show that there is a surjection J → G. We view
u, t, h as elements of J . By (1), (2) and [GKKL1, Lemma 4.1] (compare [Bau, CR1,
CRW2]), U := 〈u〈h

k,hl〉
〉 is elementary abelian; since d = gcd(k, l)we have U = 〈u〈h

d
〉
〉.

By (1) and (3) we can identify U with the additive group of Fq in such a way that
hd acts as multiplication by ζ 2d . By (4), h acts on U as an automorphism of order
(q − 1)/(2, q − 1).

By (7) and (8), J = 〈U,U t 〉, and J is perfect since the action of h in (4) implies that
U = [U, h]. Moreover, by (4) and (6), z := h(q−1)/(2,q−1) is inverted by t , centralizes U
and U t , and hence is an element of Z(J ) having order 1 or 2.

Thus, 〈u, h〉/〈z〉 is isomorphic to a Borel subgroup of PSL(2, q). By (6), 〈h, t〉/〈z〉 is
dihedral of order 2(q − 1)/(2, q − 1).
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We already know that 〈h〉 acts on the nontrivial elements of U with (2, q − 1) orbits;
an orbit representative is u, and also [[ugζ (x)]]hd if q is odd. As in the proof of [GKKL1,
Sec. 4.4.1], (7) and (8) provide the relations (4.1) required to let us deduce that J/〈z〉 ∼=
PSL(2, q).

Now J is a perfect central extension of PSL(2, q), and hence is SL(2, q) or PSL(2, q)
(since U is abelian, 6PSL(2, 9) and 3PSL(2, 9) cannot occur). Finally, (5) distinguishes
between these groups when q is odd. The bit-length of the presentation follows from (4.3).

Finally, if q is even there are significant simplifications. We may assume that l=d=1,
so that hd = h acts on U = 〈u〈h

k,hl〉
〉; the induced automorphism has order q − 1 by (3),

and (4) can be deleted. The last relation in (2) can be deleted since we have an involu-
tion written as a product of two involutions. Relation (5) can be deleted since (1) and (7)
imply that t2 = 1. Lastly, (8) is not needed since 〈h〉 has only one orbit on the nontrivial
elements of U , and since h2

= th
−1
t ∈ J and |h| odd imply that h ∈ J . Explicitly,

PSL(2, 2e) = 〈u, h, t | u2
= 1, uh

k

= uuh,

(um0)(um1)h
1
· · · (ume )h

e

= 1, ht = h−1, t = uutu〉,

where ζ + 1 = ζ k with 〈ζ 〉 = F∗2e , and
∑e
i=0mix

i is the minimal polynomial of ζ over
F2 (compare [CRW2, Theorem 3.4]). ut

Remark 4.6. Every element of SL(2, q) has bit-length O(log q) in our generators. For,
this is true of all elements of U by (4.3), while SL(2, q) = UU tUU tU .

Remark 4.7. SL(2, q) and PSL(2, q) are generated by the elements in (4.4) even for
those q not included in the preceding presentation. Later we will use these elements as if
they were involved in the actual presentations given in [CoMo] or elsewhere.

Remark 4.8. If d = 1 then relation (4) can be removed since then (3) states that hd = h
acts as multiplication by ζ 2.

In [GKKL1, Section 3.5.1] it was observed that we can choose ζ such that k = 1,
l = 1 or k = 2. Thus, d ≤ 2 for some choice of ζ , k and l. If q is even then d = 1. If
q ≡ 3 (mod 4) and k = 2 we can change ζ to −ζ 2 in order to obtain k = 1 and hence
d = 1. We can also prove that there are choices for ζ, k, l that yield d = 1 when q ≡ 5
(mod 8), but we do not know how to obtain such choices in general.

4.4. Unitary groups

We will obtain presentations for 3-dimensional unitary groups by taking the presenta-
tions in [GKKL1, Sec. 4.4.2] and deleting the portions that were needed to produce short
presentations. We use matrices of the form

u =

1 α β

0 1 −ᾱ

0 0 1

 , w =
1 0 γ

0 1 0
0 0 1

 , t =
0 0 1

0 −1 0
1 0 0

 , h =
ζ̄−1 0 0

0 ζ̄ /ζ 0
0 0 ζ


(4.9)

with F∗
q2 = 〈ζ 〉, α, β, γ ∈ Fq2 arbitrary such that β + β̄ = −αᾱ 6= 0, and γ = −γ̄ 6= 0.
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Theorem 4.10. SU(3, q) and PSU(3, q) have presentations with 3 generators, 21 and
22 relations, respectively, and bit-length O(log q).

Proof. As in [GKKL1, Sec. 4.4.2], we will assume that q 6= 2, 3, 5, and use elements
a = ζ k, b = ζ l , where 1 ≤ k, l < q2, such that

a2q−1
+ b2q−1

= 1 and aq+1
+ bq+1

= 1,
Fq = Fp[aq+1],
Fq2 = Fp[a2q−1] if q is odd while Fq = Fp[a2q−1] if q is even.

Then u = uh
k
uh

l
w with w 6= 1 in the center of the group 〈u〈h〉〉 of order q3.

Let d = gcd(k, l).
If γ ∈ Fq2 write γ ′ := γ q+1 and γ ′′ := γ 2q−1, and also letmγ (x) denote its minimal

polynomial over Fp. If δ ∈ Fp[γ ], let fδ;γ (x) ∈ Fp[x] with fδ;γ (γ ) = δ and deg fδ;γ <
degmγ (compare [GKKL1, Sec. 4.4.2]).

The required presentation is as follows:

Generators: u, h, t .
Relations:
(Notation: w is defined by u = uh

k
uh

l
w.)

(1) w = wh
k
wh

l
, and also w = wh

l
wh

k
if q is odd.

(2) wp = 1.
(3) [[wma′ (x)]]hk = 1.
(4) [[wfζ ′;a′ (x)]]hk = w

h.
(5) u = uh

l
uh

k
w1.

(6) [u,w] = [uh
k
, w] = 1.

(7) up = w2.
(8) [[uma′′ (x)]]hk = w3.

(9′) [[ufζ ′′;a′′ (x)]]hk = u
hw4 if q is odd.

(9′′) ([[ufα;a′′ (x)]]hk )
h[[ufβ;a′′ (x)]]hk = u

h2
w5 if q is even and ζ ′′ satisfies ζ ′′2 = αζ ′′+β

for α, β ∈ Fq .
(10) [u, uh] = w6 and [uh

k
, uh] = w9 if q is even.

(11) t2 = 1.
(12) ht = h−q .
(13) uti = ui1hi tui2 for 1 ≤ i ≤ 7, relations due to Hulpke and Seress [HS].

Here, each wi is a word in w〈h
d
〉, each uij is a word in u〈h

d
〉, and each hi is a power of h;

all are obtained from G, and all depend on the initial choice of u and ζ in (4.9) that are
used to obtain the indicated polynomials.

Note that w〈h
d
〉 and u〈h

d
〉 involve hd rather than h so that [GKKL1, Sec. 4.1] can be

used together with (1), (5) and the definition of w. If q is even then (2) implies that both
relations in (1) hold if one does.

In [GKKL1, Sec. 4.4.2] there were several powers of h that were handled using addi-
tional relations that stated that they all commute, gave their actions on u, and dealt with
(12) for each of these powers of h. We have discarded these relations.
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See [GKKL1, Sec. 4.4.2] for a proof that this is, indeed, a presentation for SU(3, q).
(The relations (13), together with the previous relations, imply all relations (4.1) [HS].)
As in [GKKL1], at most one further relation of bit-length O(log q) is needed to produce
a presentation for PSU(3, q).

Finally, we leave SU(3, 2) = 31+2oQ8 to the reader, SU(3, 3) is in [CHRR1], and the
case SU(3, 5) follows from the efficient presentation for PSU(3, 5) in [CHRR2] together
with Lemma 2.2. ut

Remark 4.11. Let U := 〈u〈h
d
〉
〉. Applying (4.3) to both Z(U) = 〈w〈h

d
〉
〉 and U/Z(U)

shows that all elements of U have bit-length O(log q), and hence the same holds for
SU(3, q) = UU tUU tU . More generally, if c ∈ SU(3, q) and U c 6= U , then the 2-
transitivity of SU(3, q) on the set of conjugates ofU implies that SU(3, q)=UU cUU cU ,
so that all elements of SU(3, q) have bit-length O(log q) in {u, h, c}.

4.5. Suzuki groups

The short presentation in [GKKL1, Section 4.4.3] uses 7 generators and 43 relations for
Sz(q); the most crucial relation is due to Suzuki [Suz, p. 128]. Since we are trying to
decrease the numbers of generators and relations, this presentation will not be used for
2F4(q) in Section 7.2. Instead, we use simple modifications to produce the following

Proposition 4.12. Sz(q) has a presentation with 4 generators, 29 relations and bit-
length O(log q).

Sketch of proof. We will indicate the relations in [GKKL1, Section 4.4.3] that can be
deleted. Among the 7 generators, 4 were h? with ? ∈ {ζ, ζ θ , ζ + 1, ζ θ + 1}, where
F∗q = 〈ζ 〉, q = 22k+1, and θ is the field automorphism x 7→ x2k+1

. All h? are powers
of h := hζ . In [GKKL1, Section 4.4.3] we could not use the corresponding exponents,
whereas here we can. Therefore, only h will be needed.

(1) Delete all 6 relations, since all h? commute.
(4) Delete. For, (2), (3), (5) and (6) imply that 〈w〈h〉〉 ∼= F+q , while (7) specifies the ac-

tion of h in terms of ζ . Thus, the actions of all h? on 〈w〈h〉〉 are known. In particular,
(4) follows from the corresponding relation in Fq .

(13) Delete: this states that hζ θ acts on u as hθζ acts on u.
(15) One of these states that ht? = h

−1
? for ? = ζ . Delete the corresponding relations for

the other 3 elements ?.
(16) One of these states that h ∈ 〈u〈h〉, t〉. Delete the other 3 relations, which state that

all h? ∈ 〈u〈h〉, t〉.

There are now 7− 3 generators and 43− 6− 1− 1− 3− 3 relations. ut

5. SL(3, q)

The groups SL(3, q) will reappear more often in the rest of this paper than any other
rank 2 groups: we will use SL(3, q) to obtain all higher-dimensional groups SL(n, q),
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and then most of the other higher-dimensional classical groups. Therefore we will be
somewhat more explicit with these groups than with the other rank 2 groups (cf. Sections 7
and 8).

Theorem 5.1. SL(3, q) and PSL(3, q) have presentations with 4 generators, 14 and 15
relations, respectively, and bit-length O(log q).

Proof. Let SL(2, q) ∼= L = 〈X | R〉, with X = {u, t, h} and F∗q = 〈ζ 〉 as in (4.4) and the
presentation used for Theorem 4.5 (cf. Remark 4.7).

We view the elements of G as matrices, with L consisting of the matrices
(
∗ 0
0 1

)
.

Consider the group J having the following presentation.

Generators: X and c (corresponding to the permutation matrix
( 0 1 0

0 0 1
1 0 0

)
).

Relations:

(1) R.
(2) ct = t2c2.
(3) hhchc

2
= 1.

(4) uh
c
= udiag(1,ζ−1), written as a word in X. (The matrix diag(1, ζ−1) is not in L, but

it can be viewed as inducing an automorphism of L.)
(5) [u, uc] = u−tc

2
(i.e., (u−1)tc

2
).

(6) [uuc, u−tc
2
] = 1.

We will show that J ∼= G in general, but with (6) replaced by the 2 relations [u, u−tc
2
]

= [uc, u−tc
2
] = 1 when q = 2, 3, 7, 13, 16 or 19; and when q = 4, by those 2 and

the additional 3 relations [u, uch
−1

] = ucth
−1

and [u, ucth
−1

] = [uct , ucth
−1

] = 1. (N.B.:
There are presentations for the smaller of these groups already in the literature. However,
we prefer to have more uniform presentations for later use.)

Matrix calculations show that there is a surjection J → G. There is a subgroup of J
we identify with L = 〈X〉. We also view c as an element of J . We separate the argument
into five steps.

1. Computations in 〈t, c〉. The relations t4 = 1 and (2) imply that

tct = c2, t−1c2t−1
= c, t−1c3t = t−1c2t−1tct = cc2, (5.2)

and hence

tc = c−1tct t−1
= c−1c2t−1

= ct−1, tc
2
= (ct−1)c = t−1c. (5.3)

It follows that

t2(t2)c
2
(t2)c = t2 · t−1ct−1c · ct−1ct−1

= tc(t−1c2t−1)ct−1
= tccct−1

= c3. (5.4)

2. The actions of h, hc, hc
2

and c3 on L. We have h ∈ L. We now show that the actions
of hc and hc

2
on L are the same as in the target group G.



Presentations of finite simple groups 427

By (5.2) and (3), (hc)t = ht
−1c2
= (h−1)c

2
= hhc. Consequently, conjugating each

side of (4) by t , and using the interaction of t with diagonal matrices related to L, gives

(uh
c
)t = (ut )h

ct
= (ut )hh

c
= (uth)h

c
,

(udiag(1,ζ−1))t = (ut )diag(1,ζ−1)t
= (ut )diag(ζ−1,1)

= (ut )h diag(1,ζ−1)
= (uth)diag(1,ζ−1).

(Recall that h = diag(ζ−1, ζ ) in (4.4).) Thus, by (4), hc acts on L = 〈u, uth〉 as conju-
gation by diag(1, ζ−1). In view of the action of h on L, (3) implies that hc

2
acts on L as

conjugation by diag(ζ−1, 1).
If q is even then t2 = 1 and hence c3

= 1 by (5.4). Then c3 centralizes J ; we
claim that this also holds when q is odd. Here t2 = h(q−1)/2 is in Z(L). Now t2,
(t2)c = (hc)(q−1)/2 and (t2)c

2
= (hc

2
)(q−1)/2 act on L as they should: as conjugation

by 1, diag(1, ζ−1)(q−1)/2
= diag(1,−1) and diag(1,−1), respectively. Then (5.4) im-

plies that c3
= t2(t2)c

2
(t2)c acts trivially on L = 〈X〉 and hence on J = 〈X, c〉, as

claimed.

3. The elements eij (λ). For all integers m and all λ ∈ Fq , write

e12(ζ
m) := u(h

c)m , e12(0) := 1, e21(λ) := e12(−λ)
t ,

e23(λ) := e12(λ)
c, e32(λ) := e21(λ)

c

e31(λ) := e12(λ)
c2
, e13(λ) := e21(λ)

c2
.

Then e12(1) = u, e23(1) = uc, and e12(Fq) is an elementary abelian subgroup ofL by (4).
Then we also have e21(Fq) < L. By (5.3), c = tct ∈ LcL, so that J is generated by the
elements eij (λ).

Clearly, 〈c〉 acts on the set of subgroups eij (Fq); in fact 〈t, c〉 acts as the symmetric
group S3 on subscripts (i.e., as the Weyl group of G). For example, by (5.2), e23(Fq)t =
e12(Fq)ct = e12(Fq)t

−1c2
= e13(Fq); and (as we have seen) t2 acts correctly on Lc

−1
=

Lc
2

(i.e., as it does in the target group G) and hence also on e12(Fq)c
2
= e31(Fq). Simi-

larly, t acts correctly on each eij (Fq).

4. The Steinberg relations (see [GKKL1, Section 5.1 or 5.2]). The relations eij (λ)eij (µ)
= eij (λ + µ) follow from the corresponding relations in L (with {i, j} = {1, 2}) by
conjugating with t and c. We will deduce the remaining Steinberg relations from (5) and
(6) by conjugating with t , c, h and hc; we have seen that these act on the set of subgroups
eij (Fq) as they do in G. We will use (5) and (6) to prove that, for all λ,µ ∈ Fq ,

[e12(λ), e23(µ)] = e13(λµ), (5.5)

[e12(λ), e13(µ)] = 1, (5.6)

[e13(λ), e23(µ)] = 1. (5.7)

By (6), [e12e23, e13] = 1. Conjugating by hi(hc)j gives [e12(ζ
2i−j )e23(ζ

2j−i),

e13(ζ
i+j )] = 1. Let i = −j to see that e13 commutes with all e12(λ)e23(λ

−1), and



428 R. M. Guralnick et al.

hence with all e23(µ
−1)e12(µ), where we temporarily restrict the letters λ,µ to F∗q3.

Conjugating the relation [e12, e23] = e13 by hi(hc)j gives

[e12(ζ
2i−j ), e23(ζ

2j−i)] = e13(ζ
i+j ). (5.8)

This does not cover all relations (5.5) since det
( 2 −1
−1 2

)
= 3, but it does imply that

e13(λµ) = e12(−λ)e23(−µ)e12(λ)e23(µ). If ν := −(λ + µ) ∈ F∗q3, then e13 commutes
with e13(λµ) and hence with

e23(λ
−1)e12(λ) · e12(−λ)e23(µ

−1)e12(λ)e23(−µ
−1) · e23(µ

−1)e12(µ) · e12(ν)e23(ν
−1)

= e23(λ
−1
+ µ−1)e12(λ+ µ) · e12(ν)e23(ν

−1) = e23(λ
−1
+ µ−1

− (λ+ µ)−1).

Let A be the additive group generated by all λ−1
+µ−1

− (λ+µ)−1 with λ,µ, λ+ µ
∈ F∗q3. If we replace λ,µ by θ3λ, θ3µ we see that F3

qA = A.
Assume that q 6= 2, 3, 4, 7, 13, 16, 19.
Claim: A 6= 0. We must show that there exist λ,µ ∈ F∗q3 such that λ+ µ ∈ F∗q3 and

λ−1
+ µ−1

− (λ+ µ)−1
6= 0, i. e., λ/µ is not a root of z2

+ z+ 1 = 0. Thus, we need a
solution to x3

+ y3
= 1 with x, y, x6

+ x3
+ 1 6= 0. This is obvious if q > 3 and q 6≡ 1

(mod 3). If q ≡ 1 (mod 3) then the equation x3
+ y3

= 1 has at least q + 1− 2
√
q − 3

solutions in Fq . (This follows from [We]. A more precise and elementary count is given
in [Hal, p. 180].) Of these, we must exclude at most 6 solutions (x, y) with xy = 0 and
6 · 3 with x6

+ x3
+ 1 = 0, hence at most 24 solutions. It is now easy to check that we

only need to exclude the stated values of q.
Thus, F3

qA = A 6= 0. It follows that A = Fq since Fq is additively generated by
F3
q (recall that q 6= 4). Thus, e13 commutes with e23(Fq), and similarly with e12(Fq).

Conjugating by all hi(hc)j yields (5.6) and (5.7).
For all µ ∈ F , it follows that [e12(1), e23(µ)] = e13(µ) by using (5.7), (5.8), the

standard identity
[x, ab] = [x, b][x, a]b, (5.9)

and the fact that F3
q generates Fq additively. Conjugating by all hi(hc)j yields (5.5).

Finally, if q is 2, 3, 4, 7, 13, 16 or 19 then, proceeding as above, we again find that the
assumed additional relations imply (5.5)–(5.7).

5. Completion. The Steinberg relations imply that J is a homomorphic image of G =
SL(3, q), and hence J ∼= G [GLS, pp. 312–313]. By Theorem 4.5 and Remark 4.6, our
presentation has the required bit-length. This presentation uses |R| + 5 relations if q 6=
2, 3, 4, 7, 13, 16, 19. In each of these excluded cases, we added 1 or 4 further relations;
while by (3.19) and Theorem 4.5 there is a presentation for SL(2, q) using 2 generators
and 2 or 3 relations if q 6= 16, or 3 generators and 5 relations when q = 16. Consequently,
we still obtain the required numbers of generators and relations.

In order to obtain a presentation for PSL(3, q) when m := (q − 1)/3 is an integer,
add the relation hm(h2m)c = 1. ut

Remark 5.10. By Remark 4.6 and the Bruhat decomposition [GLS, Theorem 2.3.5],
each element of SL(3, q) has bit-length O(log q) in our generators.
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6. SL(n, q)

We now turn to the general case of Theorem B for the groups PSL(n, q), using a variation
on the approach in Section 5.

Theorem 6.1. Let n ≥ 4.

(i) SL(n, q) has a presentation with 6 generators and 25 relations.
(ii) SL(4, q) has a presentation with 5 generators and 20 relations.

(iii) SL(n, q), 5 ≤ n ≤ 8, has a presentation with 5 generators and 21 relations.

Each of these presentations has bit-length O(log n+ log q). At most one further relation
of bit-length O(log n+ log q) is needed to obtain a presentation for PSL(n, q).

Proof. We use two presentations:

• The presentation 〈X | R〉 for F = SL(3, q) in Theorem 5.1. We view F as the matrices(
∗ 0
0 I

)
in G = SL(n, q), and only write the upper left 3× 3 block.

• The presentation 〈Y | S〉 for T = An in Theorem 3.40, where T acts in the standard
manner on {1, . . . , n}; here X and Y are disjoint. We view T as permutation matrices.

We will also use the subgroup L = SL(2, q) of F consisting of matrices in the upper left
2× 2 block, together with the following elements:

• c =

0 1 0
0 0 1
1 0 0

 , f =
0 1 0

1 0 0
0 0 −1

 ∈ F ,

• a ∈ L such that 〈a, af 〉 = L,
• (3, 2, 1), (1, 3)(2, 4) ∈ T ,
• τ = (1, 2)(3, 4) and σ in T interchanging 1 and 2 and generating the set-stab-

ilizer T{1,2} of {1, 2} in T .

Bit-length: c, f and a have bit-length O(log q) using Remark 4.6. We may assume that
σ is a cycle of length n − 2 or n − 3 on {3, . . . , n}. The specified permutations can be
written as words in Y of bit-length O(log n) (by Remark 3.37).

We will show that G is isomorphic to the group J having the following presentation.

Generators: X, Y .

Relations:

(1) R.
(2) S.
(3) c = (3, 2, 1).
(4) aσ = af .
(5) aτ = af .
(6) (af )σ = a.
(7) [a, a(1,3)(2,4)] = 1.
(8) [af , a(1,3)(2,4)] = 1 (needed only when n is 4 or 5).
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As usual, there is a surjection π : J → G, and J has subgroups we will identify with
F = 〈X〉 and T = 〈Y 〉. Since τ has order 2, (5) implies that (af )τ = a. Hence, by
(4)–(6), 〈σ, τ 〉 normalizes 〈a, af 〉 = L, inducing the same automorphism group as 〈f 〉
does on L. In particular, elements of 〈σ, τ 〉 that fix 1 and 2 must centralize L, while
elements interchanging 1 and 2 act as f .

It follows that |LT | ≤
(
n
2

)
; as usual, we use π to obtain equality. Then LT can be

identified with the set of all 2-sets of {1, . . . , n}. Its subset L〈c〉 (where c ∈ T by (3))
consists of 3 subgroups corresponding to the 2-sets in {1, 2, 3}. Consequently, any two
distinct members of LT can be conjugated by a single element of T to one of the pairs
L,L(3,2,1) or L,L(1,3)(2,4). Here 〈L,L(3,2,1)〉 = 〈L,Lc〉 = F .

We claim that [L,L(1,3)(2,4)] = 1. By (7) and (8), since 〈a, af 〉 = L this is clear
if n is 4 or 5. Assume that n ≥ 6. By our comment about elements of 〈σ, τ 〉, we have
a(1,2)(5,6) = af and a(3,4)(5,6) = a. By (7),

1 = [a, a(1,3)(2,4)](1,2)(5,6) = [af , (a(3,4)(5,6))(1,3)(2,4)] = [af , a(1,3)(2,4)],

1 = [a, a(1,3)(2,4)](1,2)(3,4) = [af , (af )(1,3)(2,4)],

1 = [af , a(1,3)(2,4)](1,2)(3,4) = [a, (af )(1,3)(2,4)],

(6.2)

where the first equations explain the comment in (8).
Thus, any two distinct members of LT either generate a conjugate of F = SL(3, q)

or commute. Consequently, N := 〈LT 〉 ∼= G by the Steinberg presentation [GKKL1,
Sections 5.1 or 5.2]. Moreover, N � J , and J/N is a homomorphic image of 〈Y 〉 ∼= An
in which (3, 2, 1) is sent to 1 (by (3)). Thus, J/N = 1.

The bit-length follows easily from those of 〈X | R〉 and 〈Y | S〉.

Fine-tuning: We still need to count the number of relations. If n ≥ 6 then we used
4 + 3 generators and 14 + 7 + 5 relations by Theorems 3.40 and 5.1. However, we can
remove a generator and a relation as follows. In Theorem 5.1 we used a generator “c”
(corresponding to the permutation matrix acting as (3, 2, 1)); we will delete that generator
and relation (3). Start with T = 〈Y | S〉. Let c′ denote a word in Y representing the
permutation (3, 2, 1) in T (cf. Remark 3.37). Replace c by c′ throughout the presentation
〈X | R〉 used in Theorem 5.1, and insert all of the resulting relations into the above
presentation for G. Then Theorem 5.1 shows that 〈(X\{c}) ∪ {c′}〉 is F ; and when c′ is
viewed as an element of F it is precisely the permutation matrix c. We have now deleted
the generator c fromX, and we can also delete the above relation (3) since it already holds
in F .

Additional fine-tuning when 4 ≤ n ≤ 8: In these cases there is a presentation 〈Y | S〉
for T = An with 2 generators and 3 relations [ThS, CRKMW, CHRR1]. Now we obtain
4 + 2 generators and 14 + 3 + 5 relations. Once again we can use c′ in order to remove
1 generator and 1 relation from Theorem 5.1. This produces the numbers in (iii) when n
is 6, 7 or 8. When n is 4 or 5, we have an extra relation (8). However, if n = 4 we can
delete σ entirely (since |T{1,2}| = 2), therefore also deleting 2 further relations (4) and
(6) in order to obtain (ii); and if n = 5 we can choose σ = (1, 2)(3, 5) of order 2 (since
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Table 3. G,Lαi

G Lα1 Lα2

Spin5(q)
∼= Sp(4, q) SL(2, q) Spin3(q)

∼= SL(2, q)

�(5, q) ∼= PSp(4, q) SL(2, q) �(3, q) ∼= PSL(2, q)

Spin−6 (q)
∼= SU(4, q) SL(2, q) Spin−4 (q)

∼= SL(2, q2)

�−(6, q) SL(2, q) �−(4, q) ∼= PSL(2, q2)

T{1,2} ∼= S3), and therefore delete (6) in order to obtain (iii). (N.B.: When 6 ≤ n ≤ 8 this
fine-tuning will be used in Section 9 for the exceptional groups En(q).)

The group PSL(n, q): Finally, we need to add one further relation in order to obtain
PSL(n, q). Let hij be the matrix with ζ−1 and ζ in positions i and j , respectively, and 1
elsewhere. Then h12 ∈ L is one of the generators used in Theorem 4.5, and h1n and h2n
have bit-length O(log n + log q) using Remark 3.37. Let m = (q − 1)/(d, q − 1). If n
is odd, again use Remark 3.37 in order to obtain the (n − 2)-cycle (2, . . . , n − 1), and
then the additional relation hm1n(h

m
2n(2, . . . , n− 1))n−2

= 1 produces PSL(n, q) with the
required bit-length. Even n is handled similarly. ut

7. Remaining rank 2 groups

In this section we will provide presentations required in Theorem B for most of the rank 2
groups of Lie type: Sp(4, q), �(5, q) ∼= PSp(4, q), SU(4, q), �−(6, q), G2(q), 3D4(q)

and 2F4(q). The groups SU(5, q) are handled in an entirely different manner in Section 8.

7.1. Sp(4, q), �(5, q), SU(4, q), �−(6, q), G2(q) and 3D4(q)

Here the Weyl group is dihedral of order 2m = 8 or 12.

Theorem 7.1. (i) Sp(4, q) and PSp(4, q) ∼= �(5, q) have presentations with 5 gen-
erators and 27 relations if q is odd, and with 6 generators and 20 relations if q is
even.

(ii) SU(4, q) and �−(6, q) have presentations with 5 generators and 27 relations. At
most one further relation is needed to obtain a presentation for P�−(6, q).

(iii) G2(q) and 3D4(q) have presentations with 6 generators and 31 relations.

Each of the presentations in (i)–(iii) has bit-length O(log q).

Proof. (i),(ii) The root system 8 of G = Sp(4, q), PSp(4, q), SU(4, q) or �−(6, q) has
8 roots, half of them long and half short. Let 5 = {α1, α2} be a set of fundamental roots
with α1 long; the corresponding rank 1 groups Lαi are in Table 3.

We use the presentation 〈Xi | Ri〉 for Lαi in Theorem 4.5 (cf. Remark 4.7), with

Xi = {uαi , ri, hi}, i = 1, 2. (7.2)
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(Here we use ri instead of ti in order to approximate standard Lie notation. We assume
that X1 and X2 are disjoint.) The action of hi on uαi is given in Ri , and Uαi = 〈u

〈hi 〉
αi 〉 has

order q (or q2 for short α2 in the cases related to �−(6, q)). The root groups Uα , α ∈ 8,
will be built into our presentation. Standard notation [Cart, p. 46] labels the root system
as follows, with w = r1r2:

8 = {w−n(α1), w
−n(α2) | 0 ≤ n < 4}

= {±α1,±α2,±(α1 + α2),±(α1 + 2α2)}. (7.3)

If we exclude the case G = Sp(4, q) with q even, we can save 1 generator and 1
relation by using the fact that Uα1 = [Uα1+α2 , U−α2 ] = [Uwα2

, U
r2
α2 ]. (See [GLS, p. 47]; in

the excluded case, [Uwα2
, U

r2
α2 ] = 1.) In all cases we will show that G is isomorphic to the

group J having the following presentation.

Generators: (X1\{uα1}) ∪X2 except if G = Sp(4, q) with q even.
X1 ∪X2 if G = Sp(4, q) with q even.

Relations:
(Notation: w := r1r2, and uα1 := [uwα2

, u
r2
α2 ] except if G = Sp(4, q) with q even. In all

cases R1 can then be used for the elements uα1 , r1, h1.)

(1) R1 ∪ R2.
(2) hr21 , hr12 and w4 written as words in {h1, h2} (obtained from G).
(3) (uαi )

hj written as a word in u〈hi 〉αi (obtained from G) whenever {i, j} = {1, 2}.
(4) h1h2 = h2h1.
(5) Let H := 〈h1, h2〉. If α = w−n(αi) with 1 ≤ i ≤ 2 and 0 ≤ n < 4 in (7.3), write

uα := (uαi )
wn .

(a) [uα1 , uα1+2α2 ] = [uα1 , uα1+α2 ] = 1.
(b) [uα1 , uα2 ] written as a product of a word in uHα1+2α2

and a word in uHα1+α2
(ob-

tained from G).
(c) If G = Sp(4, q) with q even: [uα2 , uα1+α2 ] = 1.

The words mentioned in these relations are based on G. The words in (2) have the form
hk1h

l
2, 0 ≤ k, l < q2; and those in (5) also have bit-length O(log q) by (4.3). Thus, this

presentation has bit-length O(log q). If G = Sp(4, q) with q even, then using Theo-
rem 4.5 we have 3+ 3 generators and 5+ 5+ 3+ 2+ 1+ 4 relations. In all other cases
there are 5 generators and 9+ 9+ 3+ 2+ 1+ 3 = 27 relations.

Remark 7.4. We digress to note that, in the proof of Theorem 9.1, we will need to have
generators for one of the groups Lα1 , Lα2 for use in a presentation of another subgroup of
a target group. When we need Lα1 for this purpose, we will not be able to determine uα1

from conjugates of uα2 as in the above presentation. In that event we will need to use an
additional generator uα1 and an additional relation uα1 = [uwα2

, u
r2
α2 ] for the presentation

of our rank 2 group, obtaining a presentation with 6 generators and 28 relations.

We now continue our proof. Since we have chosen the groups Lαi as in Table 3, it
follows that there is a surjection π : J → G. By (1) there is a subgroup Lαi ∼= SL(2, q),
PSL(2, q), SL(2, q2) or PSL(2, q2) of J that we can identify with 〈Xi〉.
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By (1) and (2), H � N := 〈H, r1, r2〉. Since r2
i ∈ H by (1), we also have W :=

N/H ∼= D8.
Define Uαi := 〈u〈hi 〉αi 〉 for i = 1, 2.
By (1), (3) and (4), H normalizes each Uαi , and hence H = Hwn normalizes each

Uw
n

αi
for 0 ≤ n < 4.

Since U riαi = U−αi , the group N acts in the natural manner on the 8 root groups
Uα = 〈u

H
α 〉, α ∈ 8, labeled as in (7.3).

The Chevalley commutator relations [GLS, p. 47] have the form

[yα, yβ ] =
∏
γ

vγ with 1 6= yα ∈ Uα, 1 6= yβ ∈ Uβ , vγ ∈ Uγ , (7.5)

for roots α and β 6= ±α, where γ runs through all positive integral combinations of α
and β. Clearly, N acts by conjugation on the set of all such relations. There are 4 orbits of
W on the unordered pairs {α, β}, β 6= ±α. Instances of the corresponding relations are
in (5); and if (5c) does not apply then the definition of uα1 gives the fourth relation

(5c′) [uα1+α2 , u−α2 ] = uα1 .

If [yα, yβ ] = 1 with {yα, yβ} = {uα1 , uα1+2α2} or {uα1 , uα1+α2} in (5a), then [Uα, Uβ ]
= [〈yHα 〉, 〈y

H
β 〉] = 1. (Here yHα corresponds to the set of elements of a field F containing

F∗2, and hence generates F under addition, as in Section 5, Step 4.)
If [yα, yβ ] 6= 1 for a pair {yα, yβ} in (5b,c,c′) then, by [GKKL1, Lemma 5.4], we

obtain most of the relations (7.5) by conjugating the ones in (5b,c,c′) by elements of H .
Use of (5.9) yields all remaining relations, as in Section 5, Step 4.

At this point we have verified the Steinberg relations (cf. Section 2). Thus, J is a ho-
momorphic image of the simply connected cover of G, which is Sp(4, q) or Spin−6 (q) ∼=
SU(4, q). By Table 3, J ∼= Sp(4, q), �(5, q), SU(4, q) or �−(6, q). If J ∼= �−(6, q)
then we need at most one further relation with bit-length O(log q) in order to kill Z(J )
as in [GKKL1, p. 749].

(iii) These groups are handled in a manner similar to (i) and (ii), replacing the num-
ber 4 by 6 in (2) in order to obtain the Weyl group D12. We sketch this very briefly since
these groups do not arise in higher rank settings.

Once again we have fundamental subgroups Lα1
∼= SL(2, q) and Lα2

∼= SL(2, q) or
SL(2, q3), where the latter occurs with α2 a short root for 3D4(q). We label the roots as
in [Cart, p. 46].

We use versions of relations (1)–(5) given above, with w6 replacing w4 in (2). As
before, W := N/H acts in the natural manner on the root system 8 of type G2, and on
the associated root groups Uα—which are defined as before. This time W has 7 orbits
on pairs {α, β}, β 6= ±α, all of which are represented in (5). The long root groups Uw

n

α1
,

0 ≤ n < 6, satisfy the relations in Theorem 5.1 with c := w2h0 for a word h0 in {h1, h2}

obtained from G. (Relations (2) and (3) occur in N , while (4) follows from the known
action of H on Uα1 .) This takes care of (7.5) when α and β are long. The remainder of
the proof imitates (i) and (ii). There are 3+ 3 generators and 9+ 9+ 3+ 2+ 1+ 7 = 31
relations. ut
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Remark 7.6. Bit-lengths: Every element of each of the above groups G has bit-length
O(log q) in terms of the generators. For, this is true of all elements of Lαi , hence of their
conjugates, hence of all root groups and all elements ofH . Now the Bruhat decomposition
[GLS, Theorem 2.3.5] implies the assertion.

Similar observations hold for 2F4(q) in the next section, and more generally for all
groups of bounded rank, as in [GKKL1, Proposition 5.6] (compare Remark 5.10).

7.2. 2F4(q)

Here q = 22e+1 > 2. There is no root system in the classical sense, but there are 16 “root
groups” Ui , 1 ≤ i ≤ 16. There are rank 1 groups L1 = Sz(q) and L2 = SL(2, q), and
we use the presentation 〈Xi | Ri〉 for Li in Proposition 4.12 or Theorem 4.5. If i = 2
then (7.2) holds, and U2 := 〈u〈h2〉

2 〉 is elementary abelian of order q. On the other hand,
X1 has size 4 and contains elements u1, r1, h1 behaving essentially as before, except that
this time U1 = 〈u

〈h1〉
1 〉 is nonabelian of order q2 with Z(U1) = 〈(u

2
1)
〈h1〉〉 of order q.

In order to save one generator and one relation, we will use the commutator relation
[U1, U3] = U2 [GLS, p. 48].

Proposition 7.7. 2F4(q) has a presentation with 6 generators, 49 relations and bit-length
O(log q).

Proof. We use the following presentation.

Generators: X1 ∪X2\{u2}.

Relations:
(Notation:w := r1r2 and u2 := [u1, u

w
1 ]. ThenR2 can be used for the elements u2, r2, h2.

Let ui+n := uw
n

i for i = 1, 2 and 1 ≤ n < 8.)

(1) R1 ∪ R2.
(2) w8

= 1.
(3) hr21 and hr12 written as words in {h1, h2} (obtained from G).

(4) u
hj
i written as a word in u〈hi 〉i (obtained from G) whenever {i, j} = {1, 2}.

(5) h1h2 = h2h1.
(6) [ui, uj ] written as a product of words (obtained from G) in u〈h1,h2〉

k , i < k < j , for
the pairs (i, j) with i = 1, j ∈ {2, 4, 5, 6, 7, 8}, or i = 2, j ∈ {4, 6, 8}.

There is a surjection from the presented group J onto 2F4(q). As usual there are subgroups
Li of J we can identify with 〈Xi〉, i = 1, 2. Also, 〈r1, r2〉 is dihedral of order 16 by (1)
and (2), and normalizes H := 〈h1, h2〉 by (1) and (3). It then follows from (1), (4) and
(5) that H normalizes each subgroup Ui+n := Uw

n

i for i = 1, 2 and 0 ≤ n < 8.
As in the case of the other rank 2 groups, the known action of hw

n

i on Ui+n obtained
from (4) and (5) allows us to deduce from (6) an additional relation analogous to (7.5) for
each pair of nontrivial cosets of the form yi8(Ui), yj8(Uj ), for i, j as in (6) and yi ∈ Ui,
yj ∈ Uj (compare [GKKL1, Lemma 5.4]). By using (5.9), we see that these conjugates
of the relations (6) imply all analogues of (7.5) for these i, j . It is now easy to see that we
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have all relations required for a presentation of G ([Gri, p. 412], [BGKLP, p. 105] and
[GLS, p. 48] give the 10 formulas mimicked in (6) and in the definition u2 = [u1, u3]).

Proposition 4.12 and Theorem 4.5 imply that we have 6 generators and 29+ 5+ 1+
2+ 2+ 1+ 9 = 49 relations. ut

8. Unitary groups

Since the commutator relations for the odd-dimensional unitary groups are especially
complicated (cf. [GLS, Theorem 2.4.5(c)]), we will deal with unitary groups separately.
In fact, when combined with Theorems 3.40 and 4.10, presentations in [BeS] allow us
to use surprisingly few generators and relations—significantly fewer than seem possible
using the Curtis–Steinberg–Tits presentation.

8.1. Phan-style presentations

We will use the presentation for G = SU(n, q), n ≥ 4, given in [BeS], based on one in
[Ph]. In [BeS], subgroups U1, U2 ∼= SU(2, q) of SU(3, q) are called a standard pair if U1
and U2 are the respective stabilizers in SU(3, q) of perpendicular nonsingular vectors.

Using an orthonormal basis, it is easy to see that G has subgroups Ui ∼= SU(2, q),
1 ≤ i ≤ n− 1, and Ui,j , 1 ≤ i < j ≤ n− 1, satisfying the following conditions.

(P1) If |j − i| > 1 then Ui,j is a central product of Ui and Uj .
(P2) For 1 ≤ i < n− 1, Ui,i+1 ∼= SU(3, q), and Ui, Ui+1 is a standard pair in Ui,i+1.

(P3) G = 〈Ui,j | 1 ≤ i < j ≤ n− 1〉.

We will use the following analogue of the Curtis–Steinberg–Tits presentation.

Theorem 8.1 ([Ph, BeS]). If (P1)–(P3) hold in a group G, then G is isomorphic to a
factor group of SU(n, q) in each of the following situations.

(a) q > 3 and n ≥ 4.
(b) q = 2 or 3, n ≥ 5 and the following hold:

(1) 〈Ui,i+1, Ui+1,i+2〉 ∼= SU(4, q) whenever 1 ≤ i ≤ n− 3;
(2) if q = 2 then

(i) [Ui, Uj,j+1] = 1 whenever 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2 and i 6=
j − 1, j, j + 1, j + 2;

(ii) [Ui,i+1, Uj,j+1] = 1 whenever 1 ≤ i ≤ n − 2, 1 ≤ j ≤ n − 2 and i 6=
j − 2, j − 1, j, j + 1, j + 2.

In [BeS] it is remarked that (P1)–(P3) do not provide a presentation for SU(n, 2). It is
also noted that a standard pair in SU(3, 2) does not generate that group.

8.2. Some specific presentations

When q = 2 or 3 we will use presentations of some small groups [Br, Hav] in order to
decrease our numbers of generators and relations:
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SU(4, 3) = 〈x, y | x5y7
= x−1y3x−1y−1x−1y−3x−1y

= yxy−1xy−1x−1y−1x−1yxy3x−1

= x2y−1x−1y−1x−2y−1x−2y−1x2y−1xyxy−2
= 1〉

SU(6, 2) = 〈x, y | x2
= y7
= (xy3)11

= [x, y]2

= [x, y2]3
= [x, y3]3

= (xy)33
= (xyxy2xy3xy−3)21

= 1〉
SU(5, 2) = 〈x, y | x2

= y5
= (xy)11

= [x, y]3
= [x, y2]3

= [x, yxy]3
= [x, yxy2]3

= 1〉
SU(4, 2) = 〈x, y | x5

= (xy2)2 = x2(y−1x)2yxy−2
= 1〉.

8.3. Bounded presentations

In this section we will prove the following

Theorem 8.2. Let n ≥ 4.

(i) SU(n, q) has a presentation with 5 generators and 32 relations.
(ii) SU(n, q), 4 ≤ n ≤ 8, has a presentation with 5 generators and 30 relations.

Each of these presentations has bit-lengthO(log n+log q). At most one further relation of
bit-lengthO(log n+ log q) is needed to obtain a presentation for PSU(n, q) or�−(6, q).

Proof. We can ignore the small field cases appearing in the preceding section. Let

• F := SU(m, q), with m = 3, 4 or 6 and m < n,
• T := An, acting in the standard manner on {1, . . . , n}.

We view both of these groups as lying in G = SU(n, q), using an orthonormal basis of
the underlying vector space: F consists of the matrices

(
∗ 0
0 I

)
with an m×m block in the

upper left corner, and T consists of permutation matrices.
For each m we assume that we have the following additional ingredients:

• the presentation 〈X | R〉 for F in Theorem 4.10, except in the case of the pairs (m, q) =
(4, 2), (4, 3) or (6, 2), in which case 〈X | R〉 is given in Section 8.2;
• the presentation 〈Y | S〉 for T in Theorem 3.40 (where X and Y are disjoint);
• W := SU(2, q) < F , consisting of the matrices

(
∗ 0
0 I

)
with a 2× 2 block in the upper

left corner;

• a ∈ W and f :=
( 0 1 0 0

1 0 0 0
0 0 −1 0
0 0 0 I

)
∈ F such that W = 〈a, af 〉, where a and f are viewed

as words in X of bit-length O(log q) using Remark 4.11;
• c(1,2,3) ∈ F that acts as the 3-cycle (1, 2, 3) on the orthonormal basis, viewed as a word

in X of bit-length O(log q) (cf. Remark 4.11);
• permutations (1, 2, 3), τ = (1, 2)(3, 4), σ ∈ T , with σ and τ interchanging 1 and 2 and

generating the set-stabilizer Sn−2 of {1, 2} in T , where these permutations are viewed
as words in Y of bit-length O(log n) (using Remark 3.37).
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Case q > 3: Here we let m = 3. We will show that G is isomorphic to the group J
having the following presentation, which resembles the one in Theorem 6.1. In view of
the preceding remarks, this presentation has the desired bit-length.

Generators: X ∪ Y.

Relations:

(1) R ∪ S.
(2) c(1,2,3) = (1, 2, 3).
(3) aσ = aτ = af and (af )σ = a.
(4) [a, a(1,3)(2,4)] = 1.
(5) [af , a(1,3)(2,4)] = 1 (needed only when n is 4 or 5).

Since there is a surjection π : J → G, there are subgroups of J we can identify with
F = 〈X〉 and T = 〈Y 〉.

Since τ has order 2, (3) implies that W 〈σ,τ 〉 = 〈a, af 〉〈σ,τ 〉 = W , so that |W T
| ≤

(
n
2

)
.

Using π we see that W T consists of
(
n
2

)
subgroups we can call Wi,j = Wj,i , 1 ≤ i < j

≤ n. By (2), Wi,j ≤ F for 1 ≤ i < j ≤ 3, and W1,2,W2,3 is a standard pair in F since
W and c are defined in terms of an orthonormal basis for the 3-space underlying F .

Relations (4) and (5) imply that [W,W (13)(24)] = 1 exactly as in (6.2). If i, j, k, l
are distinct, the transitivity of T then implies that [Wi,j ,Wk,l] = 1 and 〈Wi,j ,Wi,k〉

∼=

〈W1,2,W1,3〉 = F . Since W1,3 ≤ 〈W1,2,W2,3〉, we have Wi,k ≤ 〈Wi,j ,Wj,k〉 for all
distinct i, j, k, again by the transitivity of T .

Let Ui := Wi,i+1 and Ui,j := 〈Ui, Uj 〉 for i 6= j . We have seen that Ui, Ui+1
is a standard pair in Ui,i+1. Thus, these subgroups satisfy (P1)–(P2). By Theorem 8.1,
N := 〈Ui,j | 1 ≤ i < j ≤ n− 1〉 is a homomorphic image of G.

We claim thatWi,j ≤ 〈Wi,i+1, . . . ,Wj−1,j 〉whenever i < j . This is clear if i+1 = j ,
so assume that i + 1 < j . By induction,

Wi,j ≤ 〈Wi,j−1,Wj−1,j 〉 ≤ 〈Wi,i+1, . . . ,Wj−2,j−1,Wj−1,j 〉,

which proves our claim.
Consequently, Wi,j ≤ N for all i < j , so that N = 〈W T

〉 = 〈F T 〉� J. By (2), J/N
is a quotient of An in which (1, 2, 3) is mapped to 1. Thus, J/N = 1.

Total: |X| + |Y | = 3+ 3 generators and |R| + |S| + 5 = 21+ 7+ 5 = 33 relations if
n > 5.

As in the first fine-tuning in the proof of Theorem 6.1, we can delete a generator
and a relation as follows. Start with T = 〈Y | S〉. By Remark 4.11, the element t ∈ F
can be written as a word in X′ := {u, h, c(1,2,3)} of bit-length O(log q). Use this to
rewrite the presentation for F in Theorem 4.10 using the generating setX′. In the resulting
presentation for F replace c(1,2,3) by (1, 2, 3) ∈ T , viewed as a word in Y , and insert all
of the resulting relations into the above presentation for G. Then Theorem 4.10 shows
that 〈(X′\{c(1,2,3)}) ∪ {(1, 2, 3)}〉 is F and (1, 2, 3) is precisely the permutation matrix
c(1,2,3) ∈ F . We have now deleted the generator t from X, and we can also delete the
above relation (2) since it already holds in F .
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This proves (i) when q > 3 and n > 5. (N.B.: Similar decreases can be obtained in
the later cases q ≤ 3, but these are not needed for (i).)

As in the fine-tuning in the proof of Theorem 6.1 when 4 ≤ n ≤ 8, in these cases
we use a presentation 〈Y | S〉 for An with 2 generators and 3 relations, producing 3 + 2
generators and 21+ 3+ 6 relations for G.

Case q = 3: This time we letm = 4 and use the presentation 〈X | R〉 for SU(4, 3) given
in Section 8.2. We assume that we have

• the elements a, f, c(1,2,3), (1, 2, 3), τ, σ listed above;
• c(2,3,4) ∈ F that acts as the indicated permutation on the orthonormal basis, viewed as

a word in X;
• (2, 3, 4), viewed as a word in Y of bit-length O(log n).

We will show that G is isomorphic to the group J having the following presentation.

Generators: X ∪ Y.

Relations:

(1′) R ∪ S.
(2′) c(1,2,3) = (1, 2, 3), c(2,3,4) = (2, 3, 4).
(3′) aσ = af and (af )σ = a.

By (2′), τ = (1, 2)(3, 4) ∈ F . Then τ, f ∈ F = SU(4, 3) agree in their action on W .
As before, (3′) implies that W 〈σ,τ 〉 = W and hence that W T consists of

(
n
2

)
subgroups

Wi,j = Wj,i , 1 ≤ i < j ≤ n. By (2′), the 6 subgroups Wi,j , 1 ≤ i < j ≤ 4, are in F , and
W1,2,W2,3 is a standard pair in a subgroup SU(3, 3) of F .

This time [W,W (13)(24)] = 1 already holds in F . Consequently, if i, j, k, l are dis-
tinct, then the transitivity of T implies that [Wi,j ,Wk,l] = 1, 〈Wi,j ,Wi,k〉

∼= 〈W1,2,W1,3〉
∼= SU(3, 3) and 〈Wi,j ,Wi,k,Wi,l〉

∼= 〈W1,2,W1,3,W1,4〉 = F .
Once again, the subgroups Ui := Wi,i+1 and Ui,j := 〈Ui, Uj 〉 of J satisfy (P1)–

(P2). They also behave as in Theorem 8.1(b1) since 〈Ui,i+1, Ui+1,i+2〉 ∼= 〈U1,2, U2,3〉 =

〈W1,2,W2,3,W3,4〉 = F .
Once again, the subgroup N generated by all Ui,j is isomorphic to G. As before, N

is normal in J = 〈X, Y 〉 and hence is J .
Total: |X| + |Y | = 2+ 3 generators and |R| + |S| + 4 = 4+ 7+ 4 relations.

Case q = 2: This time we let m = 6. Using the presentation for F = SU(6, 2) in
Section 8.2 we may assume that we have

• generators a′, b′ for V := SU(3, 2), viewed as words in X;
• c(1,2,3), c(1,2)(4,5), c(2,3,4,5,6) ∈ F acting as the indicated permutations on the orthonor-

mal basis and viewed as words in X;
• (2, 3, 4, 5, 6), τ ′ = (1, 2)(4, 5), σ ′ ∈ T , where 〈σ ′, τ ′〉 is the set-stabilizer of {1, 2, 3}

in T and these permutations are viewed as words in Y of bit-length O(log n) (using
Remark 3.37). We may assume that (1, 2, 3) is a cycle of σ ′.
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We will show that G is isomorphic to the group J having the following presentation.

Generators: X ∪ Y.
Relations:
(1′′) R ∪ S.
(2′′) c(1,2)(4,5) = τ ′, c(2,3,4,5,6) = (2, 3, 4, 5, 6).
(3′′) a′σ

′

= a′c(1,2,3) and b′σ
′

= b′c(1,2,3) .

By (2′′), τ ′ ∈ F and hence τ ′ normalizes V . By (3′′), it follows that 〈a′, b′〉 = V is
normalized by 〈σ ′, τ ′〉. Then V T consists of

(
n
3

)
subgroups Vi,j,k , 1 ≤ i < j < k ≤ n.

By (2′′), the 20 subgroups Vi,j,k , 1 ≤ i < j < k ≤ 6, are in F = SU(6, 2).
By the transitivity of T , if i, j, k, l, r, s are distinct then 〈Vi,j,k, Vi,j,l〉∼=〈V1,2,3, V1,2,4〉

∼= SU(4, 2) and [Vi,j,k, Vl,r,s] = 1.
Again by (2′′), F ∩ T induces A6 on an orthonormal basis of the 6-space for F .

Let W1,2 denote the subgroup SU(2, 2) on the 2-space spanned by the first two basis
vectors. Within F we see thatW1,2 lies in both V1,2,3 and V1,2,4. ThenNT (W1,2) contains
(1, 2)(3, 4) ∈ F, Alt{4, 5, . . . , n}, Alt{3, 5, . . . , n}, and hence also the set-stabilizer of
{1, 2}.

It follows that W T consists of
(
n
2

)
subgroups Wi,j = Wj,i , 1 ≤ i < j ≤ n. By

(2′′), the 15 subgroups Wi,j , 1 ≤ i < j ≤ 6, are in F = SU(6, 2), and W1,2,W2,3 is a
standard pair in V = SU(3, 2) < F . Moreover, Wi,j ≤ Vi,j,k for all distinct i, j, k, since
W1,2 ≤ V1,2,3.

Let Ui := Wi,i+1, Ui,i+1 := Vi,i+1,i+2 and Ui,j := 〈Ui, Uj 〉 iff |i − j | > 1.
The subgroups Ui,j satisfy (P1)–(P2). They also behave as in Theorem 8.1(b1) since

〈Ui,i+1, Ui+1,i+2〉 ∼= 〈U1,2, U2,3〉 = SU(4, 2). The conditions in Theorem 8.1(b2) also
hold since they hold for the subgroups U1, U4,5 and U1,2, U4,5 of F .

Hence, the subgroup N generated by all Ui,j is isomorphic to G. As before, N is
normal in J = 〈X, Y 〉 and hence is J .

Total: |X| + |Y | = 2+ 3 generators and |R| + |S| + 4 = 8+ 7+ 4 relations.

This proves (i) and (ii) for all q. Each group in the final assertion is the quotient of a
group in (i) or (ii) by a cyclic group, and hence is obtained as in the proof of Theorem 6.1
by adding at most one new relation of bit-length O(log n+ log q). ut

When n = 4, this theorem should be compared to Theorem 7.1, which contains a presen-
tation for SU(4, q) with 5 generators, 27 relations and bit-length O(log q).

9. General case

We now complete the proofs of Theorems A and B.

Theorem 9.1. All simply connected groups of Lie type and rank n ≥ 3 over Fq , and
their simple quotients, have presentations with at most 9 generators, 49 relations and
bit-length O(log n+ log q). More precisely, with the stated bit-length,

(i) SL(n + 1, q) has a presentation with 6 generators and 25 relations, with at most
one further relation needed to obtain a presentation for PSL(n+ 1, q);
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(ii) SU(2n, q) and SU(2n+1, q) have presentations with 5 generators and 32 relations,
with at most one further relation needed to obtain a presentation for PSU(2n, q) or
PSU(2n+ 1, q);

(iii) Sp(2n, q) has a presentation with 8 generators and 47 relations if q is odd, and 9
generators and 40 relations if q is even, with at most one further relation needed to
obtain a presentation for PSp(2n, q) ∼= �(2n+ 1, q);

(iv) Spin2n+1(q) with q odd, Spin−2n+2(q) and �−(2n + 2, q) have presentations with
9 generators and 48 relations, with at most one further relation needed to obtain a
presentation for �(2n+ 1, q) or P�−(2n+ 2, q);

(v) Spin+2n(q) has a presentation with 9 generators and 42 relations, with at most two
further relations needed to obtain a presentation for P�+(2n, q);

(vi) Ên(q) has a presentation with 6 generators and 30 relations, with at most one fur-
ther relation needed to obtain a presentation for En(q);

(vii) F4(q) and 2Ê6(q) have presentations with 8 generators and 46 relations, with at
most one further relation needed to obtain a presentation for 2E6(q).

Proof. Theorems 6.1 and 8.2 take care of (i) and (ii): we may assume that G is neither
a special linear nor unitary group. We use a variation on the methods in [GKKL1, Sec-
tion 6.2]. As usual, 5 = {α1, . . . , αn} is the set of fundamental roots of G, and for each i
there are root groups U±αi .

Case 1: G is a classical group. We will assume that G is one of the groups in Table 4.
As in [BGKLP, GKKL1] or the proof of Theorem 6.1, each of the remaining groups can
be obtained by killing (part of) the center of one of these using at most two additional
relations of bit-length O(log n+ log q) [GLS, pp. 312–313].

Number 5 as in [GKKL1, Section 6.2]: the subsystem {α1, . . . , αn−1} is of type
An−1, αn is an end node root and is connected to only one root αj in the Dynkin dia-
gram (here j = n− 1 except for type Dn, where j = n− 2). Let

G1 = 〈U±αi | 1 ≤ i < n〉, G2 = 〈U±αn , U±αj 〉, L2 = 〈U±αn〉, L = 〈U±αj 〉. (9.2)

Summarizing part of Table 4: G1 has type An−1 and G2 is a rank 2 group—of type
A1 × A1 in the Dn case. (Recall that Sp(2n, q) ∼= Spin2n+1(q) if q is even.)

Let L1 be the subgroup ofG1 generated by the fundamental root groups that commute
with L2. Then L1 is of type An−2 unless G has type Dn, in which case L1 is of type
A1 × An−3.

We will use the following presentations:

• the presentation 〈X0 | R0〉 for L = SL(2, q) in Theorem 4.5 (cf. Remark 4.7);
• the presentation 〈X | R〉 for G1 in Theorem 6.1;
• the presentation 〈Y | S〉 for G2 in Theorem 7.1 or Remark 7.4 (or Theorem 4.5 for the

group SL(2, q)× SL(2, q)).

Remarks concerning these presentations.

◦ Our use of 〈X0 | R0〉 will save several relations, but requires some care.
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Table 4. G,Gi

G G1 G2 L

Sp(2n, q), q odd SL(n, q) Sp(4, q) short
Spin+2n(q) SL(n, q) Spin+4 (q)

∼= SL(2, q)× SL(2, q) short
Spin2n+1(q) SL(n, q) Spin5(q)

∼= Sp(4, q) long
�(2n+ 1, q) SL(n, q) �(5, q) long
Spin−2n+2(q) SL(n, q) Spin−6 (q)

∼= SU(4, q) long
�−(2n+ 2, q) SL(n, q) �−(6, q) long

• We assume that X ∩ Y = X0 and R ∩ S = R0: both of the presentations 〈X | R〉
and 〈Y | S〉 use a presentation for SL(2, q). In more detail: the presentation 〈Y | S〉
in Theorem 7.1 uses presentations for L and L2 from Theorem 3.40, together with
additional relations; and 〈X0 | R0〉 is used as part of a presentation for SL(3, q) in
Theorem 5.1, which is then used as part of a presentation for G1 in Theorem 6.1.
• Since we use 〈X0 | R0〉 for two different groups, we need the sets X0 and R0 explic-

itly, not implicitly as might have occurred in the presentation 〈Y | S〉 in Theorem 7.1.
Thus, if L is a long SL2 then we need to include an additional generator uα1 and re-
lation uα1 = [uwα2

, u
r2
α2 ], as stated in Remark 7.4. This occurs for �(2n + 1, q),

P�−(2n+ 2, q) and their covers.
◦ A smaller change is needed in the proof of Theorem 6.1. Instead of reading the roots
α1, . . . , αn−1 from left to right, we read them from right to left. Therefore, in place of
matrices such as

(
∗ 0
0 I

)
one should think of matrices

(
I 0
0 ∗

)
. Clearly this has no mean-

ingful effect on Theorem 6.1 or its proof.

Choose two generators for L1 and two for L2, all viewed as words in X or Y . We still
need to verify that these choices can have the required bit-lengths.

Bit-lengths of generators for L1 and L2. A presentation for L2 was already used in our
presentation for G2, so apply Remark 4.6 to any pair of generators for L2.

While there are certainly pairs of generators of L1, we need to find generators b, c of
bit-length O(log n+ log q). First assume that L1 = SL(n− 1, q). As in Remark 7.6, we
may assume that n−1 ≥ 4. Let c ∈ SL(n−1, q) be an element of the monomial group that
is (1, 2, . . . , n− 1) (acting on the standard basis) if n− 1 is odd, and is (1, . . . , n− 2)t ′

if n − 1 is even, where t ′ :=
(
I 0
0 t

)
∈ L with t one of the generators in (4.4). Since

the presentation for An in Theorem 3.40 was involved in the presentation appearing in
Theorem 6.1, c has bit-length O(log n+ log q) in X ∪ Y using Remark 3.37.

Two of the generators of L are u and h (in (4.4))), where u and hc
2

commute. Then
b := uhc

2
has bit-length O(log n + log q) as in Remark 7.6, and u and hc

2
are powers

of b. Now L1 = SL(n− 1, q) is generated by the 〈c〉-conjugates of the root group 〈u〈h〉〉
of L, and hence by b and c, as required.

WhenG has typeDn the groupL1 has typeA1×An−3, and 2 generators of the desired
bit-length can be found in the same way.

We will show that G is isomorphic to the group J having the following presentation
which, in view of the preceding remarks, has the desired bit-length.
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Generators: X, Y .

Relations:

(1) R ∪ S.
(2) [L1, L2] = 1.

More precisely, impose 4 commutation relations using pairs of words in X ∪ Y that
map onto the chosen generators of L1 or L2.

We claim that J ∼= G. For, J surjects onto G by Table 4, and hence we may assume that
G1 = 〈X〉, G2 = 〈Y 〉, L, L1 and L2 are subgroups of J , where L ≤ G1 ∩ G2. Clearly
J is generated by the fundamental root groups contained in G1 or G2. Any two of these
root groups satisfy the Curtis–Steinberg–Tits relations (see the references in Section 2):
either they are both in G1 or in G2, or they commute since [L1, L2] = 1. Thus, J is a
homomorphic image of the simply connected cover of G. Table 4 tells us that there is
only one possible image for each choice of G2, which proves the claim.

This presentation uses |X| + |Y | − |X ∩ Y | generators and |R| + |S| + 4 − |R ∩ S|
relations (4 relations ensure that [L1, L2] = 1). By Theorems 5.1, 6.1 and 7.1, together
with Remark 7.4, these numbers are as follows.

G Generators Relations
Sp(2n, q), q odd 6+ 5− 3 25+ 27+ 4− 9
Spin2n+1(q) 6+ 6− 3 25+ 28+ 4− 9

Spin−2n+2(q) 6+ 6− 3 25+ 28+ 4− 9

Spin+2n(q) 6+ (3+ 3)− 3 25+ (9+ 9+ 4)+ 4− 9

For type Dn, G2 uses two commuting copies of the presentation for SL(2, q) given in
Theorem 4.5; one can slightly reduce this presentation for SL(2, q) × SL(2, q). For
�(2m + 1, q) ∼= Sp(2m, q) with q even in (iii), the presentation for Sp(4, q) in The-
orem 7.1(i) has 7 fewer relations than when q is odd.

This proves parts (iii)–(v) of the theorem.

The groups Sp(6, q) and Spin−8 (q): In the cases F4(q) and 2Ê6(q) we will use the
〈X0 | R0〉 trick for each of the fundamental groups A1, and this requires Remark 7.4.
For Sp(6, q) and Spin−8 (q) we also use the presentation in Theorem 5.1 instead of the one
in Theorem 6.1, in each case obtaining |X| + |Y | − |X ∩ Y | = 4+ 6− 3 = 7 generators
and |R| + |S| + 4− |R ∩ S| = 14+ 28+ 4− 9 = 37 relations.

Case 2: G is an exceptional group. We modify the above argument slightly. Let G be
the simply connected cover of the simple group. We use subgroups G1,G2, L1 of G
whose types are in the following table:

G G1 G2 L1
E8 A7 A2 A2 × A4
E7 A6 A2 A2 × A3
E6 A5 A2 A2 × A2
F4 C3 A2 A2
2E6

2D4 A2 A2
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while L and L2 have type A1. Here G2 = 〈L,L2〉 and L2 corresponds to an end node of
the Dynkin diagram.

We again use a presentation 〈X | R〉 for G1 and a presentation 〈Y | S〉 for G2, where
X ∩ Y = X0 and R ∩ S = R0 for a presentation 〈X0 | R0〉 for L = SL(2, q). Once again
L1 and L2 are generated by 2 elements of bit-length O(log q) (as in Remarks 5.10 and
7.6). Precisely as above the previous relations (1) and (2) produce a presentation:

• ForG = Ên(q): |X|+|Y |−|X∩Y | = 5+4−3 generators and |R|+|S|+4−|R∩S| =
21+ 14+ 4− 9 = 30 relations by Theorems 6.1(iii) and 5.1;
• For G = F4(q) or 2Ê6(q): |X| + |Y | − |X ∩ Y | = 7 + 4 − 3 = 8 generators and
|R| + |S| + 4 − |R ∩ S| = 37 + 14 + 4 − 9 = 46 relations using Theorem 5.1 and
the presentation just obtained for G1 = Sp(6, q) or Spin−8 (q) with 7 generators and 37
relations.

Since 〈X | R〉 and 〈Y | S〉 have bit-length O(log q), the same is true of our presentation
forG. Once again, as in [GKKL1] it is easy to kill the center whenG is Ê6(q), 2Ê6(q) or
Ê7(q) [GLS, p. 312], using at most one additional relation of bit-length O(log q). ut

Remark 9.3. The exact same approach could have been used for the unitary groups
SU(2m, q), starting with the presentation for SU(4, q) in Theorem 7.1(ii). The result
would be a presentation for SU(2m, q) using 8 generators and 47 relations—more rela-
tions than in Section 8. Odd-dimensional unitary groups are more of a problem: even for
SU(5, q) we do not know how to use the Steinberg presentation to obtain as few relations
as in Section 8.

The same method also produces a presentation for SU(6, q) having 7 generators and
37 relations, yielding a presentation for 2Ê6(q) having the same numbers of generators
and relations as above.

Proof of Theorems A and B. As pointed out in Section 1, Theorem A follows from The-
orem B and [GKKL1, Lemma 2.1] or Lemma 2.3 (cf. Corollary 3.43).

For most of the groups in Theorem B, the required presentation is contained in The-
orems 3.40, 4.5, 4.10, 5.1, 6.1, 8.2 and 9.1, together with Propositions 4.12 and 7.7. For
other quotients of quasisimple linear groups we need at most one further relation. For
example, at the end of the proof of Theorem 6.1 we provided a generator for the center of
SL(n, q), and hence we can factor out any of its powers.

By Lemma 2.2, starting with a presentation 〈X | R〉 for some perfect central extension
of the simple group, each perfect central extension by a cyclic group has a presentation
with |X|+1 generators, |X|+ |R|+1 relations and the desired bit-length. This takes care
of alternating groups using Theorem 3.40.

It remains to consider the sporadic perfect central extensions of the groups G already
dealt with [GLS, pp. 312–313]: 6A6 ∼= 6PSL(2, 9), (4×4)SL(3, 4), 2Sp(6, 2), 3�(7, 3),
(2× 2)SU(6, 2), (3 × 3)SU(4, 3), 3G2(3), 2G2(4), (2 × 2)Sz(8), (2 × 2)�+(8, 2),
2F4(2), (2 × 2)2Ê6(2). (Note that 2SL(4, 2) ∼= 2A8 and 2SU(4, 2) ∼= Sp(4, 3).) Some
cases are already in the literature [CHRR1, CHRR2, CHRR3] or have been seen earlier.
We need to improve other presentations so that our initial number of relations is signif-
icantly smaller than before. This amounts to using known presentations for groups such
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as SL(2, 2),SL(3, 2) or SL(3, 4) in place of our previous general presentations, and then
proceeding as in earlier sections. It is straightforward to check that, even when we need
to use Lemmas 2.2 or 2.3 more than once, in all remaining cases we obtain at most 9
generators and 49 relations. Of course, bit-length is not an issue here.

As an example, consider G = 2Ê6(2). Use G1 = SU(6, 2) and G2 = SL(3, 2) in the
proof of Theorem 9.1. Since these have presentations with 2 generators and 8 relations
(Section 8.2) and 2 generators and 3 relations, respectively, the argument used in Theo-
rem 9.1 produces a presentation forG with 2+2 generators and 8+3+4 relations, hence
Lemma 2.3 produces another presentation with 2 generators and 16 relations. Next we ob-
tain a presentation of any cover 22Ê6(2) with 2+1 generators and 2+16+1 relations by
using Lemma 2.2, and then one with 2 generators and 20 relations by Lemma 2.3. Finally,
we obtain a presentation for (2× 2)2Ê6(2) with 2+ 1 generators and 2+ 20+ 1 relations
using Lemma 2.2, and then one with 2 generators and 24 relations by Lemma 2.3. It is
now easy to obtain presentations for all covers of 2E6(2). ut

Call a groupG almost quasisimple if it has a normal quasisimple subgroup S with CG(S)
= Z(S). Then Theorem A implies the following

Corollary 9.4. All 2-generated almost quasisimple finite groups of Lie type, except pos-
sibly when the socle is 2G2(q), have presentations with 2 generators and at most 60
relations. If the group is not 2-generated then there is a presentation with 3 generators
and at most 60 relations.

Proof. Let G be such a group with quasisimple normal subgroup S. Then G/S embeds
in Out(S). We claim that any subgroup of Out(S) has a presentation with at most 3 gen-
erators and 6 relations. If S is not of type D4, by [GLS, Theorem 2.5.1] there is a nor-
mal series of Out(S) of length at most 3 with all quotients cyclic. If there are 2 terms
then there is a presentation with 2 generators and 3 relations. If there are 3 terms then
there is a presentation with 3 generators and 6 relations. If S/Z(S) ∼= P�+(8, pe), then
Out(S) ∼= S4 × Ze when p > 2 and Out(S) ∼= S3 × Ze when p = 2. Since any subgroup
of S4 has a presentation with 2 generators and at most 3 relations, the claim holds in this
case as well.

By [DaL], if d(G) is the minimum number of generators of G then we have d(G) =
min{2, d(G/S)}. (N.B.: For groups of Lie type, the proof in [DaL] does not use the clas-
sification of the finite simple groups.) Thus, by Lemma 2.4, if S has a presentation with
2 generators and r relations, then G has a presentation having at most 2 + d(G) gener-
ators and r + 6 + 2 · 3 relations, and hence another presentation with 2 generators and
(2 + d(G)) + (r + 12) relations by Lemma 2.3. As in the proof just provided for Theo-
rems A and B, it is now straightforward to check all cases in Theorem A. ut

10. Additional presentations for classical groups

We now provide an alternative to the preceding section for presentations of classical
groups. We will use Section 3.6 and its notation concerning the group Wn = Zn−1

2 o An,
consisting of n×n real monomial matrices with respect to the standard orthonormal basis
{v1, . . . , vn} of Rn.
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10.1. Groups of type Dn

By Theorem 6.1, since P�+(6, q) ∼= PSL(4, q) we only need to consider the case n ≥ 4.
We will use Proposition 3.46 in order to imitate the argument in Theorem 6.1.

Theorem 10.1. �+(2n, q) has a presentation with

(i) 8 generators and 31 relations if n ≥ 4,
(ii) 7 generators and 27 relations if n = 4 or 5.

Each of these presentations has bit-length O(log n+ log q). At most one additional rela-
tion of bit-length O(log n+ log q) is needed to obtain a presentation for P�+(2n, q).

Proof. There is a hyperbolic basis e1, f1, . . . , en, fn of V = F2n
q associated with G =

�+(2n, q). The group W := Wn lies in G and permutes the pairs {ei, fi}, 1 ≤ i ≤ n: if
n ≥ 5 then W < G follows from the fact that W is perfect, and for n = 4 we can see this
by restricting from the group �+(10, q).

Each element ofW can be viewed using two different vector spaces: Rn and V . In the
action on Rn, we write elements in terms of the standard orthonormal basis as permuta-
tions of {1, . . . , n,−1, . . . ,−n}, as in Section 3.6. The resulting diagonal matrices in W
are the elements of W leaving each pair {ei, fi} invariant in its action on V . Since these
two views are potentially confusing (especially when q is even), we will usually write
elements in both manners.

We digress in order to observe that, when q is odd, W does not lift to an isomorphic
copy inside the simply connected cover Ĝ of G. For, Steinberg’s criterion [St3, Corol-
lary 7.6] states that an involution in �+(2n, q) lifts to an element of order 4 in the spin
group if and only if the dimension of its −1 eigenspace on V is ≡ 2 (mod 4). Apply
this to diag(−1,−1, 1, . . . , 1) = (e1, f1)(e2, f2) ∈ W in order to obtain an element of
order 4 in Ĝ, which proves our claim.

We view SL(3, q) as the subgroup of G preserving the subspaces 〈e1, e2, e3〉 and
〈f1, f2, f3〉 while fixing the remaining basis vectors of V . We use the following presen-
tations:

• the presentation 〈X | R〉 for F = SL(3, q) in Theorem 5.1,
• the presentation 〈Y | S〉 for W in Proposition 3.46 (with X and Y disjoint).

We also use the following elements:

• c =

0 1 0
0 0 1
1 0 0

 , f =
0 1 0

1 0 0
0 0 −1

 ∈ F ;

• a ∈ F such that L := 〈a, af 〉 ∼= SL(2, q) consists of all matrices
(
∗ 0
0 1

)
in F ;

• (3, 2, 1) = (e3, e2, e1)(f3, f2, f1), (1, 3)(2, 4) = (e1, e3)(e2, e4)(f1, f3)(f2, f4) ∈

W , and s = diag(−1,−1, 1, 1, . . . , 1) = (e1, f1)(e2, f2) ∈ W representing an element
of Y (cf. Proposition 3.46);
• τ = (1, 2)(3, 4) = (e1, e2)(e3, e4)(f1, f2)(f3, f4) and σ that generate the stabilizer in
W of 〈v1 − v2〉 (within Rn) and send v1 − v2 to v2 − v1.
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Bit-length: c, f and a have bit-length O(log q) using Remark 5.10. We may assume that
σ is the product of s and a cycle of odd length n − 2 or n − 3 on {3, . . . , n}, so that the
stated elements of W all have bit-length O(log n) in Y (by Remark 3.37).

We will show that G is isomorphic to the group J having the following presentation.

Generators: X, Y .

Relations:

(1) R.
(2) S.
(3) c = (3, 2, 1).
(4) aσ = af , aτ = af .
(5) (af )σ = a.
(6) [a, a(1,3)(2,4)] = 1.
(7) [af , a(1,3)(2,4)] = 1 if n = 4 or 5.
(8) [a, as

(3,2,1)
] = 1.

(9) [af , as
(3,2,1)

] = 1 if n = 4.

First we verify these relations inG. The vectors±(v1−v2) and±(v1+v2) are in the root
system8 forG. Since these pairs are perpendicular, the associated root groups determine
commuting subgroups 〈X±(v1−v2)〉 and 〈X±(v1+v2)〉

∼= SL(2, q), where 〈X±(v1−v2)〉
s(3,2,1)

= 〈X±(v1+v2)〉 since s(3,2,1) = diag(1,−1,−1, 1, . . . , 1). This implies relations (8) and
(9). For a similar reason 〈X±(v1−v2)〉 and 〈X±(v3−v4)〉 commute, which implies relations
(6) and (7). Thus, there is a surjection J → G.

Now consider J . As usual, we may assume that F = 〈X〉 and W = 〈Y 〉 lie in J .
Using (4), (5) and |τ | = 2, we see that 〈σ, τ 〉 normalizes L. Then LW can be identified
with the set of n(n − 1) pairs {±α} of vectors α = ±vi ± vj ∈ Rn, i 6= j , in the root
system 8. The groups in LW produce additional root groups Xα , α ∈ 8.

Any unordered pair of distinct, nonopposite roots can be moved by W to one of the
following pairs within Rn:

(a) v1 − v2, v1 + v2, (b) v1 − v2, ±(v1 − v3), (c) v1 − v2, v3 − v4.

Then the corresponding root groups can be moved in the same manner.
Let N := 〈LW 〉 = 〈Xα | α ∈ 8〉 = 〈FW 〉E J .
We need to verify the Steinberg relations for the root groupsXα . The pairs (b) already

lie in F = SL(3, q), so the desired relations are immediate. It remains to consider the
pairs (a) and (c).

As in (6.2), (6) and (7) imply that the root groups determined by (c) commute.
Before considering (a), we note that (4) and (5) imply that every element of W that

interchanges v1−v2 and v2−v1 also interchanges a and af . Two such elements are s and,
when n ≥ 5, also (1, 2)(4, 5). Since t := s(3,2,1) = diag(1,−1,−1, 1, . . . , 1) commutes
with s, and t (1,2)(4,5) = diag(−1, 1,−1, 1, . . . , 1) = st , by (8) we have

1 = [as, at s] = [af , (af )t ],
1 = [a(1,2)(4,5), at (1,2)(4,5)] = [af , (a(1,2)(4,5)s)t ] = [af , at ].
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By (9), the second of these relations also holds when n = 4. Then also 1 = [af t , a]. Now
the root groupsXv1−v2 < Lv1−v2 = L = 〈a, a

f
〉 andXv1+v2 < Lv1+v2 = L

t
= 〈at , af t 〉

commute, as required for (a).
Thus, N is a perfect central extension of G. We have seen that W prevents it from

being the simply connected cover, so that N ∼= G. Relation (3) pulls (3, 2, 1) into N , so
that J/N = 1.

If n = 4 we can delete σ in (4) and (5). If n = 5 we may assume that |σ | = 2 and
hence delete (5). Thus, in all cases relations (3)–(9) contribute 6 relations.

By Proposition 3.46, this presentation for �+(2n, q) has the stated numbers of gen-
erators and relations. Finally, at most one further relation of bit-length O(log n + log q)
is needed to kill the center. ut

As in the proof of Theorem 6.1, we can remove a generator and a relation by using c :=
(3, 2, 1) ∈ W in the presentation for SL(3, q) in Theorem 5.1.

10.2. Groups of type Bn or Cn

Next we will glue Zn−1
2 o An or Zn4 o An and a group of type B2 or C2.

Theorem 10.2. Let n ≥ 4.

(i) Sp(2n, q) and �(2n+ 1, q) with q odd, SU(2n, q) and �−(2n+ 2, q) have presen-
tations with 9 generators and 50 relations;

(ii) Sp(2n, q) has a presentation with 10 generators and 43 relations if q is even.

Each of these presentations has bit-length O(log n + log q). At most one additional re-
lation of bit-length O(log n + log q) is needed to obtain a presentation for PSp(2n, q),
PSU(2n, q) or P�−(2n+ 2, q).

Proof. Let G = Sp(2n, q), SU(2n, q), �(2n + 1, q) or �−(2n + 2, q). Its root system
8 ⊂ Rn of type Cn or Bn consists of the vectors ±vi ± vj for 1 ≤ i < j ≤ n, and all
±2vi or ±vi , respectively. We may assume that a fundamental system is

5 = {α1, αj = vj+1 − vj | 2 ≤ j ≤ n− 1},

where α1 = v1 or 2v1.

We will use the subgroup L12 ∼= Sp(4, q), SU(4, q), �(5, q) or �−(6, q) corre-
sponding to the root subsystem812 generated by α1 and α2, and the rank 1 subgroups L1
and L2 of L12 determined by ±α1 and ±α2, respectively. We will also need the subgroup
L23 ∼= SL(3, q) (or SL(3, q2) in the unitary case) corresponding to the root subsystem
generated by α2 and α3.

There is a hyperbolic basis e1, f1, . . . , en, fn of the natural module V for G (with
additional basis vectors v, or v and v′, perpendicular to all of these in the orthogo-
nal cases). We claim that we may assume that W = Zn−1

2 o An or Zn4 o An is a
subgroup of G that permutes the 1-spaces 〈e1〉, 〈f1〉, . . . , 〈en〉, 〈fn〉, fixing any addi-
tional basis vectors v, v′, with O2(W) fixing each pair {〈ei〉, 〈fi〉}. Elements of An pre-
serve each of the sets {e1, . . . , en} and {f1, . . . , fn}. The specific W depends on the
underlying form. If (ei, fi) = (fi, ei) = 1 for all i, then W = Zn−1

2 o An < G
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acts on {e1, f1, . . . , en, fn}, with O2(W) fixing each pair {ei, fi}. If G is symplectic
and q is odd, then W = Zn4 o An < G and O2(W) consists of transformations that
are products of isometries ei 7→ fi 7→ −ei 7→ −fi , each of which fixes all other
basis vectors. This proves our claim. Morever, in either case, there is a natural map
:̄ W → W ≤ Zn2 oAn giving the permutation action ofW on {〈e1〉, 〈f1〉, . . . , 〈en〉, 〈fn〉};
its kernel acts as 1 on Rn, and W̄ acts as isometries of Rn.

We may assume that the groups Li and L12 have the following supports:

G Support of L1 Support of L12 Support of L2
Sp(2m, q) 〈e1, f1〉 〈e1, e2, f1, f2〉 〈e1, e2, f1, f2〉
SU(2m, q) 〈e1, f1〉 〈e1, e2, f1, f2〉 〈e1, e2, f1, f2〉
�(2m+ 1, q) 〈e1, f1, v〉 〈e1, e2, f1, f2, v〉 〈e1, e2, f1, f2〉
�−(2m+ 2, q) 〈e1, f1, v, v

′
〉 〈e1, e2, f1, f2, v, v

′
〉 〈e1, e2, f1, f2〉

Consequently, the support of L(1,3)(2,4)2 is 〈e3, e4, f3, f4〉, so that

[L12, L
(1,3)(2,4)
2 ] = 1. (10.3)

Similarly,
[L1, L

(3,2,1)
2 ] = 1. (10.4)

We use the following presentations:
• the presentation 〈X | R〉 for L12 ∼= Sp(4, q), SU(4, q), �(5, q) or �−(6, q) in Theo-

rem 7.1 whenG = Sp(2n, q), SU(2n, q),�(2n+1, q) or�−(2n+2, q), respectively;
• the presentation 〈Y | S〉 forW in Proposition 3.46 or Remark 3.48 (where X and Y are

disjoint).
We use the following elements, writing elements of W as isometries of Rn:
• c = (3, 2, 1) = (e3, e2, e1)(f3, f2, f1) ∈ W ;
• s ∈ W representing an element of Y , where s̄ = diag(−1,−1, 1, . . . , 1) on Rn (cf.

Proposition 3.46 or Remark 3.48);
• (2, 3, 4)=(e2, e3, e4)(f2, f3, f4), (1, 3)(2, 4)=(e1, e3)(e2, e4)(f1, f3)(f2, f4)∈W ;
• σ, τ ∈ W generating the set-stabilizer W{±(v2−v1)} of the pair {±(v2 − v1)};
• u, r := t, h ∈ L2, with h normalizing the root groups X±α2 and u ∈ Xα2 , as in (4.4);
• a ∈ L2 such that L2 = 〈a, a

s
〉;

• b ∈ L12 such that L12 = 〈b, b
s
〉;

• a pair of generators for L1.
Bit-length: By Remarks 4.6, 7.6 and 3.37, the above elements of L1, L2 and L12 have
bit-length O(log q), and the above elements of W have bit-length O(log n).

The required elements a and b exist, and can be chosen to be generators of nonsplit
maximal tori.

As in Section 10.1, in the orthogonal cases with q odd [St3, Corollary 7.6] implies
that the subgroupW ofG does not lift to an isomorphic subgroup of the simply connected
cover of G.

Write q ′ := q except in the unitary case, where q ′ := q2.
Consider the group J having the following presentation.
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Generators: X, Y .

Relations:
(1) R.
(2) S.
(3) dσ and dτ written as words in X (obtained from G), for each d ∈ {b, bs}.
(4) [(2, 3, 4), L1] = 1.
(5) cr = r2c2.
(6) hhchc

2
= 1.

(7) uh
c
= udiag(1,ζ−1) written as a word in X.

(8) [u, uc] = u−rc
2
.

(9) [uuc, u−rc
2
] = 1.

(10) [b, a(1,3)(2,4)] = 1.

As in the proof of Theorem 5.1, we will show that J ∼= G, provided that (9) is replaced by
the two relations [u, u−rc

2
] = [uc, u−rc

2
] = 1 when q ′ = 2, 4, 7, 13, 16 or 19, together

with 3 further relations given in the proof of Theorem 5.1 when q ′ = 4.
There is a surjection J → G. For example, relations (2)–(6) in Theorem 5.1 are the

present relations (5)–(9) for 〈L2, c〉 ∼= SL(3, q ′), while the present relations (10) and (11)
follow from (10.3) and (10.4).

As usual, we may assume that L12 = 〈X〉 andW = 〈Y 〉 lie in J , and hence the groups
L1 and L2 are also in J . As we just noted, we have also built L23 := 〈L2, c〉 ∼= SL(3, q ′)
as a subgroup of J .

Relation (3) impliesW{±(v2−v1)} normalizes 〈b, bs〉 = L12. Then |LW12| ≤ n(n− 1)/2,
and as usual this implies that equality holds. Moreover, by (3),W{±(v2−v1)} acts on L12 as
it does inG, and hence normalizes L2, so that LW12 and LW2 both can be identified with the
set of all pairs {±(vi − vj )}, i 6= j . For the same reason,W{±v1,±(v2−v1)} acts on L12 as it
does in G, and hence normalizes L1. Then so does 〈W{±v1,±(v2−v1)}, (2, 3, 4)〉 = W{±v1}

by (4). It follows that |LW1 | = n.
Consequently, starting with the root subgroups Xα1 and Xα2 of L12, in J we obtain

the “correct” set XWα1
∪XWα2

= {Xα | α ∈ 8} of root subgroups.
Let N := 〈XWα1

∪ XWα2
〉 = 〈LW12〉E J . We will verify the Steinberg relations for N .

Many of the required relations already hold for L12 or L23 (which is why we built L23
into the presentation).

Any unordered pair α, β of distinct, nonopposite roots can be moved by W to one of
the following:

(a) α1,±α2, (b) α1, α1
(1,2)(3,4), (c) α1, α4, (d) α2,±α3, (e) α2, α4.

Only pairs (c) and (e) are not inside L12 or L23.
Since each element of W{±(v2−v1)} acts correctly on L12, s′ := s(1,3)(2,4) commutes

with L12 (compare (10.3)). By (10),

1 = [b, a(1,3)(2,4)]s = [bs, as
′(1,3)(2,4)] = [bs, a(1,3)(2,4)],

1 = [b, a(1,3)(2,4)]s
′

= [b, (as)(1,3)(2,4)],
1 = [b, a(1,3)(2,4)]s

′s
= [bs

′ s, (as
′s)(1,3)(2,4)] = [bs, (as)(1,3)(2,4)].
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Now [L12, L
(1,3)(2,4)
2 ] = [〈b, bs〉, 〈a, as〉(1,3)(2,4)] = 1, which takes care of the pairs (c)

and (e) (and explains the use of α4 instead of α3 in (c)).
Clearly c ∈ 〈L2, c〉 = L23 = 〈L2, L

c
2〉 ≤ N since c ∈ W by definition. Thus, J/N is

a homomorphic image ofW in which c is mapped to 1, so that J = N . Now J is a central
extension of G, but we have seen that W prevents it from being the simply connected
cover in the orthogonal cases. Hence, J ∼= G.

If q ′ is not one of the excluded numbers, use Theorem 7.1 together with Proposi-
tion 3.46 or Remark 3.48 to see that there are 6 + 4 generators and 27 + 11 + 12 = 50
relations in (i), and (ii) is similar. In the excluded cases, as in Theorem 5.1 there are
presentations for SL(2, q ′) with small enough numbers of generators and relations to
counterbalance the few additional relations we have imposed. ut

Remark 10.5. We already had presentations for these groups in Section 9 having at most
9 generators and 48 relations.

There are similar presentations if n is 3 or 4.

11. Concluding remarks

1. Short and bounded presentations are goals of one aspect of Computational Group The-
ory ([Sims, pp. 290-291], [HEO, p. 184]). Such presentations have various applications,
such as in [LG, KaS] for gluing together presentations in a normal series in order to ob-
tain a presentation for a given matrix group. The presentations in the present paper are not
short in the sense of length used in [Sims, HEO, GKKL1], and it is not clear how small
bit-length might influence the speed of computer processing of a word of large length in
an abstract group. However, small bit-length is expected to speed up processing in the
case of matrix groups, due to a fast exponentiation algorithm in [LGO, Sec. 10].

2. The presentations for Sn and An in Section 3 that are related to prime numbers appear
to be practical. The ones in Section 3.4 for general n have one unusual and awkward
relation: y = w, expressing y as a word in X ∪Xy ; see (3.42) and the description of this
relation in the proof of Corollary 3.28. Experimentation appears to be needed in order to
find a “nice” additional relation of this sort. That is, the presentation given in Section 3.5
is among the easiest to describe of the presentations obtained using our methods, but it
may not be the best in practice.

3. In Section 3.7 we dealt with Aut(Fn). The following are intriguing conjectures:

(1) All braid groups are boundedly presented.
(2) All mapping class groups are boundedly presented.

4. In Corollary 3.43, we used Lemma 2.3 in order to obtain presentations of alternating
and symmetric groups using 2 generators and 8 relations. The same lemma can be used in
order to decrease the number of relations by one for the remaining groups in Theorem A.
The easiest way to see this is to use the “3/2-generation” of all finite simple groups [GK],
according to which any one of our generators a is a member of a generating pair {a, b};
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and then proceed as in Corollary 3.43. However, this uses an unnecessary amount of
machinery, since each of our generating sets contains a member a for which a suitable b
can be found without too much difficulty.

5. Many of our presentations undoubtedly can be improved. For example, the number of
relations in Proposition 3.46 probably can be improved somewhat by using the ideas in
Sections 3.1 and 3.4 in place of Theorem 3.40.

Phan-type presentations for orthogonal groups [BGHS, GrHNS] should help decrease
the numbers of relations in Sections 7, 9 and 10.

In the proofs of Theorems 6.1 and 8.2(v) we fine-tuned our presentations for some
small-dimensional linear groups in order to decrease the number of relations used for ex-
ceptional groups in Section 9. There are further small-rank cases where we could have
proceeded in a similar manner, using known presentations for An, n ≤ 10, with 2 gener-
ators and 3 relations [CHRR1, CHRR2, Hav] (cf. Example 3.21(10)). Also see the end of
the proof of Theorems A and B in Section 9.

All of the presentations in Sections 5–10 use presentations for SL(2, q). When q is
even these only need 5 relations (Theorem 4.5) instead of the 9 relations involved in
almost all of our counts (e.g., if q > 16 then the presentation for SL(3, q) in Theorem 5.1
needs only 10 relations). Similar decreases occur if q is prime.

6. We have observed that length is a more stringent requirement than bit-length. Never-
theless, bit-length is a nontrivial restriction: we cannot prove Theorem A while retaining
control over bit-length. Another example is as follows:

In parts (ii)–(vii) of Theorem 9.1 we can decrease the numbers of relations by 2, at
the cost of not being able to control bit-length for large rank groups.

Namely, we choose generators of L1 and L2 different from those in the proof of The-
orem 9.1. If m ≥ 2 then SL(m, q) is always generated by a transvection (elementary
matrix) and an element of order (qm − 1)/(q − 1) (cf. [Ka]). Applying this with m = 2
and m = n − 1 produces generators ai, bi of Li with a1, b2 transvections and a2, b1 of
orders relatively prime to q. Write a = a1a2 and b = b1b2. There are integers ki, li
such that aki = ai and bli = bi inside G, since (|a1|, |a2|) = (|b1|, |b2|) = 1. Then
the 4 relations used to guarantee that [L1, L2] = 1 can be replaced by the 2 relations
[ak1 , bl2 ] = [ak2 , bl1 ] = 1.

However, we do not know whether an element a2 of order (qn−1
− 1)/(q − 1) can

be found having bit-length O(log n+ log q) in our generators if n is arbitrarily large (cf.
Remark 7.6 for bounded rank groups).

7. As observed in Section 3 we have constructed presentations for alternating and sym-
metric groups with bounded expo-length. The remaining presentations in this paper do
not have this property, unless we only consider groups over bounded degree extensions of
the prime field. An obstacle to our obtaining presentations with bounded expo-length is
that we do not know sufficiently nice presentations of Fq when this field has large degree
over the prime field Fp.
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In Section 4.3 we started with a presentation of Fq (as an algebra over Fp) of the form
Fq = Fp[x, y]/(m(x), y − gζ 2(x)), where x, y map onto ζ 2d and ζ 2, respectively, and
used it in order to obtain a presentation of SL(2, q).

Roughly speaking, short (with length O(log q)) presentations of Fq as an algebra
over Fp yield presentations of SL(2, q) with short bit-length. However in order to obtain
a presentation of SL(2, q) with bounded expo-length using the same method, we would
need a presentation of Fq in which every relation involves only a bounded number of
monomials. This is a computational question concerning “sparse” constructions of finite
fields about which little appears to be known [GaN]. The same remarks also apply to the
unitary and Suzuki groups.

Appendix: Lengths

This paper has dealt with bit-lengths of presentations. We conclude with some elementary
results involving lengths (rather than bit-lengths) of presentations that were alluded to in
Section 1.

Notation: For a word w in the free group F = F{x,y}, let f (w) denote the sum of the
exponents of y. Then f : F → Z is a homomorphism. The symbols x and y will denote
free generators of F or permutations, depending on context.

Theorem A1. Let G = 〈x, y〉 be a transitive subgroup of Sn, where the support of x has
size m. Then any presentation of G based on x and y has length greater than n/m.

Proof. Since G is transitive, every cycle of y (viewed as a set of points) has nonempty
intersection with the support supp(x) of x. In particular, y has at most m cycles.

Regard each cycle c of y as a circular permutation. Then c splits into |c ∩ supp(x)|
(possibly empty) arcs using the members of c ∩ supp(x), with each arc disjoint from
supp(x). The sum of the lengths of these arcs is |c \ supp(x)| = |c| − |c ∩ supp(x)|.
Summing over all c we see that the sum of the arc lengths for all cycles of y is n − m.
Hence, there is some arc of length ≥ (n − m)/m, and so some arc of even length n′ ≥
(n/m) − 2. Relabeling the permuted points, we may assume that {1, . . . , n′} is part of a
cycle of y in the stated order, and is disjoint from supp(x).

If w ∈ F has length at most n′/2, we claim that w(n′/2) = yf (w)(n′/2) when w is
evaluated in G. For, if 0 ≤ |i| ≤ |j | ≤ n′/2 then yi sends n′/2 into the complement
of supp(x), and hence xyi(n′/2) = yi(n′/2): the x’s occurring in w do not have any
affect on the calculation of w(n′/2). Thus, if w = 1 in G then yf (w) fixes n′/2, so that
f (w) = 0 since |f (w)| ≤ n′/2.

In fact, if w ∈ R ⊆ F has length ≤ n′ then once again f (w) = 0. For, write
w = w1w

−1
2 for words w1 and w2 of length ≤ n′/2. We have seen that wi(n′/2) =

yf (wi )(n′/2) for i = 1, 2. Since w(n′/2) = n′/2, it follows that yf (w1)(n′/2) =
yf (w2)(n′/2). Then yf (w1)−f (w2)(n′/2) = n′/2 with |f (w1)|, |f (w2)| ≤ n′/2. Thus,
f (w) = f (w1)− f (w2) = 0, as claimed.

Consequently, all elements of R of length at most n′ are contained in ker f .
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We may assume that G is not cyclic. If G has a presentation of length at most n/m, it
follows that each relator has length at most (n/m)− 2 ≤ n′. By the preceding paragraph,
F/ker f is a surjective image of G. However, F/ker f is infinite since it has an abelian-
ization with y of infinite order: the surjection sending F → 〈y〉 via x 7→ 1 and y 7→ y

has ker f in the kernel. This contradiction completes the proof. ut

The preceding argument also works when there are more than two generators and the
union of the supports of all but one has size m. However, this argument cannot be used
for bit-length in place of length, and the result is false in that setting [BCLO].

The theorem implies that there is no O(log n)-length presentation of Sn based on the
elementary generators (1, 2) and (1, . . . , n) (and then the proof is even easier). In this
case we can go further:

Theorem A2. Any presentation of Sn, n > 2, based on x = (1, 2) and y = (1, . . . , n)
has a relation of length at least 2n− 2.

Proof. Since there is no surjection Sn→ Zn, n does not divide f (r) for some relation r .
We will show that each such relation has length ≥ 2n− 2.

Rearrange (i.e., conjugate) r into the form

1 = xyb1xyb2x · · · ybk

= x · yb1xy−b1 · yb1+b2xy−b1−b2 · · · yb1+···+bk−1xy−b1−···−bk−1 · yb1+···+bk

for integers bi not divisible by n. Rearranging does not increase the length of our relator.
This expresses yb, b := f (r), as a product of 〈y〉-conjugates of x; here yb 6= 1 by our

choice of r . Considering supports shows that 2k ≥ n, but we claim more: k ≥ n− 1. We
have yb written as a product of certain transpositions (i, i + 1), where we view 1, . . . , n
mod n. Form a graph with vertices 1, . . . , n and the above transpositions (i, i + 1) as
(undirected) edges. Suppose that some transposition (j, j+1) is not an edge. Our product
gets us from j to yb(j) = j + b by a path, and also from j + 1 to yb(j + 1) = j + 1+ b
by a path. These two paths use all n − 1 transpositions (s, s + 1) with s 6= j (possibly
using some of these transpositions more than once), as claimed.

Between any two of the k occurrences of x in r there is at least one occurrence of y
(i.e., each bi 6= 0). Hence, each of the generators x and y occurs at least k times in r , so
that r has length at least 2k ≥ 2n− 2. ut

This result is optimal in view of the presentation

Sn = 〈x, y | x
2
= yn = (xy)n−1

= (xxy)3 = (xxy
i

)2 = 1, 2 ≤ i ≤ n/2〉

(cf. [Moo, p. 358]), in which the unique relation (xy)n−1
= 1 with sum of y-exponents

not divisible by n has length exactly 2n− 2.
This argument can be pushed slightly further:

Theorem A3. Assume that G = 〈x, y〉 does not have a surjection onto Z|y|.

(i) Suppose that G ≤ Sn, where the support of x has size m and the support of each
nontrivial power of y has size ≥ n′. Then any presentation of G based on x and y
has a relation of length ≥ 2n′/m.
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(ii) Suppose that G ≤ GL(n,K) for a field K, where the support of x has dimension
m and the support of each nontrivial power of y has dimension ≥ n′. Then any
presentation of G based on x and y has a relation of length ≥ 2n′/m.

Proof. We will prove (i); the proof of (ii) is essentially the same. Let G = 〈x, y | R〉.
As before, |y| does not divide f (r) for some relation r ∈ R. We will show that each such
relation has length ≥ 2n′/m.

Rearrange r into the form

1 = xa1yb1xa2yb2xa3 · · · ybk

= xa1 · yb1xa2y−b1 · yb1+b2xa3y−b1−b2 · · · yb1+···+bk−1xaky−b1−···−bk−1 · yb1+···+bk

for nonzero integers ai, bi . Our choice of r implies that yb1+···+bk = yf (r) 6= 1, and
we have expressed yf (r) as a product of conjugates of k nontrivial powers of x. By hy-
pothesis, the support of yf (r) has size ≥ n′. By considering support sizes we see that
n′ ≤ mk.

Between any two occurrences of x in r there is at least one occurrence of y. Hence,
each of the generators x and y occurs at least k ≥ n′/m times in r . ut

Somewhat as above, this argument works when there are more than two generators, one
of which behaves as y does while the support of each of the others has size at most m.
Note that (i) is actually a special case of (ii).

Unlike in Theorem A1, there is no transitivity assumption concerning G; but in that
theorem transitivity is the only restriction on y. Theorems A1 and A3 apply, for example,
to G = An with x a 3-cycle and y an n-cycle or the product of two n/2-cycles, or
y = (1, 2)(3, . . . , n); and to G = Sn, n = 2s + 1, with x a transposition and y the
product of disjoint cycles of length s and s + 1.

Historical addendum

In November, 2008, we came across the following paper using Google: H. Saß, Eine ab-
strakte Definition gewisser alternierender Gruppen, Math. Z. 128, 109–113 (1972). This
paper does not seem to have been mentioned in any subsequent research involving pre-
sentations of groups such as PSL(2, p) or An. For any prime p > 2, Saß proved that

Ap+2 ∼= 〈T ,C,B | C
p
= T 3

= B(p−1)/2
= (T C)p+2

= 1,
(T C−1T C)2 = (T C−αT Cα)2 = B−1CBC−α

2
= 1,

B−1T BT −1
= (C−1T C1−αT Cα−1T 2CB)p = 1〉,

where F∗p = 〈α〉. (Moreover, if p ≡ 3 (mod 4) then the relation (T C−αT Cα)2 = 1 can
be deleted.) Saß started with a presentation for PSL(2, p) [Fr], and then used a variant
of (3.1) also due to Carmichael [Car1, p. 262]. Note that the above relations include a
presentation 〈B,C | Cp = B(p−1)/2

= 1, CB = Cα
2
〉 for the group AGL(1, p)(2) that

was crucial for us, but Saß did not use this group.
Nevertheless, if Carmichael’s relation (T C)p+2

= 1 is deleted and if Neumann’s
presentation [Neu] for AGL(1, p)(2) is used instead of the preceding one, then Saß’s
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presentation becomes Examples 3.4(2), (4). In the notation used several times in Sec-
tions 3.1–3.2, Saß’s relator (C−1T C1−αT Cα−1T 2CB)p turns out to be (1, b) (this re-
sembles (3.10)).

Thus, Saß essentially obtained one of our initial results, except for the unfortunate
relation (T C)n = 1 (n = p+2) appearing in different notation in the presentation [Car1,
p. 262] forAn when n is odd (repeated in [Car2, p. 185, Ex. 1] and [CoMo, p. 67]). In fact,
Carmichael’s argument shows that his version of the relation (T C)n = 1 can be deleted
for all odd n.
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